 Research
 Open access
 Published:
Characterization of the coding gain for MPSK with conjoint signals under correlated Nakagamim fading channels
Journal of Electrical Systems and Information Technology volume 10, Article number: 46 (2023)
Abstract
In the paper, a comprehensive analysis is presented on the conjoint coding gain achieved in arbitrarily correlated Mary phaseshift keying (MPSK) signals in a spatial diversity system. The system operates over Nakagamim fading channels and is affected by additive white Gaussian noise (AWGN). The proposed signal synthesizer primarily induces an even phase shift in the output signals. To enhance the coding gain, an orthogonal transformation matrix is introduced, which effectively preserves energy and operates independently of the channel correlation matrix, making it blind to signal information measurements. The main objective is to generate additional copies of conjoint signals from the received signals, simulating the scenario as if there were more antennas deployed. To evaluate the system’s performance in terms of symbol error rate (SER), an analytical framework is developed and its accuracy is validated through MonteCarlo simulations. Moreover, extensive tests are conducted to explore the impact of different antenna configurations and fading severity levels. The fading severity, denoted as ’m’, is varied in the experiments, considering values of 0.5, 1, 3, and 7. Additionally, the measurements incorporate varying antenna spacing values relative to the signal carrier wavelength, specifically 0.1, 0.2, and 0.5. The results obtained from the experiments demonstrate that the coding gains achieved depend on the value of ’m’, with higher gains observed for lower ’m’ values. However, as ’m’ increases, the coding gains become negligible.
Introduction
The presence of correlation among antenna branches in multiantenna systems negatively affects signal reception, especially in modern compact wireless handheld devices where antenna spacing is limited. Existing literature assumes independent antenna branches, but in reality, closely spaced antennas are often correlated [1,2,3,4,5,6,7,8]. Hence, it is crucial to tackle the consequences of unwanted correlations between antenna branches. A preferred approach would involve incorporating a decorrelator at the receiver [6,7,8,9],.
There are various methods available for decorrelation, and one such technique is eigenvalue decomposition (EVD) [2, 10, 11]. EVD can be employed to decompose a covariance matrix of correlated received signals or channels. When EVD is applied to the covariance matrix, it transforms into a set of mutually orthogonal eigenvectors with dimensions devoid of correlation. Another method for decorrelation is the principal component analysis (PCA). PCA reduces data dimensionality and is grounded in the EVD [12] and [13]. It uses the principal components/eigenvectors from the covariance matrix to obtain decorrelated representations while retaining the variance of the original data.
Due to various limitations such as hardware constraints, space restrictions, and cost factors, it may not always be practical to deploy multiple physical antennas. However, virtual diversity decorrelators, also referred to as virtual antenna arrays or blind decorrelators, provide an alternative solution by simulating the advantages of multiple physical antennas using just one or a few physical antennas [5, 12, 14,15,16]. These methods remain an active and evolving focus of research and development in the wireless communications field. For instance, previous studies have explored decorrelation receivers, with the KarhunenLoeve Transformation (KLT) to enhance performance through generating independent virtual antennas [2, 17, 18]. However, the KLT approach requires perfect knowledge of the covariance matrix, which relies on accurate channel state information (CSI) that is often unavailable in practical scenarios.
Furthermore, discrete Fourier transform (DFT) and fast Fourier transform (FFT) techniques have been employed to implement blind decorrelators in wireless communications [19] and [20]. However, a challenge persists in mitigating signal errors caused by correlation. In addition, DFT and FFT may necessitate specific designs, such as uniform circular arrays (UCAs) with uniform circular receive antenna spacing. Despite utilizing the current invention, these approaches yield limited decorrelation gains.
A dual diversity decorrelator that achieves decorrelation by adding and subtracting the received signals from correlated branches, proving effective in dual Selection Combining (SC) and Switch and Stay Combining (SSC) branches has been used in [21]. However, it does not improve equal gain combining (EGC) and square law combining (SLC) techniques [18].
Newly developed techniques have emerged that bypass the need for calculating covariance matrices by updating estimates for individual input training vectors [5]. However, these methods exhibit certain drawbacks in terms of convergence and stability. They may also not be essential for achieving coding gains. This research seeks to illustrate that coding gains can be achieved using a transformation matrix that synthesizes excess virtual signals from received correlated signals under arbitrarily correlated Nakagamim fading channels with EGC. The essential statistical equations that are simple and converge rapidly, such as the SER and the coding gains, are derived. Analytical and simulation approaches support the obtained results. Furthermore, the effectiveness of the investigated decorrelator is confirmed to approach maximumratio combining (MRC), showcasing its superior performance compared to existing approaches.
The motivation for conducting this study stems from [18] and [21], which collectively indicate that no discernible benefits have been observed regarding the decorrelation of signals through EGC combining. [18] and [21] also limit themselves to dual correlated antenna branches. In contrast, this study will provide empirical evidence to demonstrate that the practice of decorrelating \(N_r\) antenna branches through EGC combining does, in fact, yield tangible benefits. Subsequently, the following paragraphs outline the accomplishments in this article:

1.
Firstly, we derive the coding gains ((21)) for the EGC combining scheme in arbitrarily correlated MPSK cojoint signals under Nakagamim fading channels. To do so, the signaltonoise ratio (SNR) at the output of the combiner and the SNR at the output of the decorrelator are analysed and used to evaluate the gain of the decorrelator system.

2.
Secondly, we show that the coding gains for the EGC combiner in arbitrarily correlated fading channels that follows a Nakagamim distribution depends on the fading parameter, m.

3.
Thirdly, we show that the proposed decorrelator achieves decorrelation. In addition, it is blind, thus simple because it does not estimate the correlation matrix, but depends on the coding gains inherent in the conjoint signals, which are synthesized from the received signals.

4.
Finally, we demonstrate that the SER performance of EGC equals the performance of MRC after decorrelation.
The following text describes the structure of this document. The first part serves as an introduction. The second part discusses the modeling of the system. Section three elaborates on signal combining and the resulting SNR. The fourth section examines the performance of the system. A summary of the findings is presented in the fifth section, and the work concludes in the sixth section.
In this study, the symbols used can be explained as follows: Matrices are denoted by bold uppercase letters, scalar quantities are represented by regular letters, and bold lowercase letters represent vectors. The Qfunction with a Gaussian distribution is denoted as Q(.). Furthermore, the operators E[.], \((.)^*\), and \((.)^H\) represent the expectation, complex conjugate, and Hermitian operators, respectively. The gamma function is denoted as \(\Gamma (.)\), and \(J_0\left( \cdot \right)\) represents the Bessel function of the first kind with zero order.
Conjoint diversity system modeling
Synthesizer operation and signal combining
A SingleInput MultipleOutput (SIMO) diversity system with \(N_r\) receive branches is examined. To process the received signals, a diversity decorrelator is employed, which generates multiple copies of the received signals. These newly generated signals are then fed into a diversity combiner to obtain an approximate version of the transmitted symbol. In the case of \(N_r\) diversity branches, \(N_r\) signals from the receive antennas produce \(N_{r}(N_{r}1)\) additional decorrelated signals. This results in a total of \(N^{2}_{r}\) input signals to the diversity combiner. For instance, if we have 4 receive antennas as shown in Fig. 1, where \(N_r=4\), there will be 12 additional decorrelated outputs. To generate these decorrelated signals, a combination of sum, difference, and conjugate operations is performed on selected pairs of signals. This process introduces coding gains rather than diversity gains because the variances of the sum signal \(({{\widehat{s}}}_{i}+{{\widehat{s}}}_{k})\), difference signal \((j{{\widehat{s}}}_{k}  j{{\widehat{s}}}_{i})\), and branch signal \(({{\widehat{s}}}_{i})\) differ from those of the received branch signals. However, due to some correlation between the sum and difference signals, the resulting decorrelated outputs, known as conjoint signals, are not entirely mutually independent. Finally, the \(N^{2}_{r}\) outputs are combined using EGC diversity combiner.
Diversity synthesizer analysis
The suggested diversity decorrelator is presented as,
where \(\theta =45^0\)
Consider \(z_k\) as the symbol that has been transmitted. In the case of a receive system with inputs \(\widehat{{\textbf{s}}}\), the decorrelator produces an output \(\mathbf {y =}{\textbf{Q}}^{{\textbf{H}}}\widehat{{\textbf{s}}}\). When we examine a twobranch system with two inputs, \({{\widehat{s}}\ }_{1}\ \text {and}\ {{\widehat{s}}\ }_{2}\), the signal at the decorrelator’s output can be expressed as,
Correlated signal model
The signal received at the \(i_{th}\) branch, which is independent, is expressed as,
where the transmitted signal amplitude and phase angle are denoted by \(A_k\) and \({\phi }_k\), respectively. The dependence on the index k can be eliminated for symbolbysymbol detection. \(n_i\) signifies the AWGN. The phase of the channel, denoted by \({{\psi }_i}\), follows a uniform distribution over the interval \([0,2\pi ]\) for MPSK during a single signal interval. Additionally, \({ {\alpha }_i}\) refers to the Nagakamim fading envelope, which has a probability distribution function for a statistically independent and identically distributed fading channel, as expressed in [22, 23], which is given as,
The severity of fading, determined by the parameter m, varies from 0.5 to \(\infty\). \(\Omega =E( \alpha ^2)\) represents the average power or the mean squared value of \(\alpha\). The Gamma function, represented by the symbol \(\Gamma (m)\), is defined as [9]; \(\Gamma \left( m \right) = \int _{0}^{\infty }y^{m  1}exp(  y)dy.\)
Additionally, the signal received from a correlated Nakagamim channel, characterized by the correlation coefficient \(\rho\), is expressed as follows.
where \(I_{i}\) and \(D_{i}\) are random variables that conform to a Gaussian distribution, exhibiting a zero mean and a variance of \(\sigma ^{2}\) with \(E\left[I_{i}D_{k} \right]= 0\ \ \ \ \ \ i,k = 1,2,\ \ldots ,\ N_{r}\), \(C_{I_{i}I_{k}} = E\left[I_{i}I_{k} \right]= \rho \sigma ^{2}\) and \(C_{D_{i}D_{k}} = E\left[D_{i}D_{k} \right]= \rho \sigma ^{2}\).
Due to the independence of the noise components and lack of correlation with the signals, \(E\left[n_{i}n_{k} \right]= E\left[n_{i}I_{k} \right]= E\left[n_{i}D_{k} \right]= 0\).
The correlation coefficient \(\rho _{\text {kl}}\) can be used to express the spatial correlation between two received signals from any two branches [24] and [25] as,
The random variables \({{\widehat{h}}}_{k}\) and \({{\widehat{h}}}_{l}\), with variances of \(\sigma _{{{\widehat{h}}}_{k}}^{2}\) and \(\sigma _{{{\widehat{h}}}_{l}}^{2}\) respectively, are included. If \({\textbf{R}}\) is a correlation matrix that has been normalized, it can be expressed as [24] [26]:
Based on the explanations provided in (6), it is clear that the correlation coefficients \({\rho }_{k,l}\) and \({\rho }_{l,k}\) are complex conjugates, meaning \({\rho }_{k,l}= {\rho }^*_{l,k}\). Consequently, the correlation matrix, when normalized, exhibits Hermitian properties, implying that it is equal to its conjugate transpose ( \({{\textbf{R}}}^H={{\textbf{R}}}\)).
The process of eigenvalue decomposition (EVD) can be employed to decompose \({\textbf{R}}\) into orthogonal eigenvectors and eigenvalues. This decomposition can be achieved through an eigenfilter operation, as explained in [2, 26,27,28,29,30] as,
The matrix \({{\textbf {Q}}}\) consists of orthonormal eigenvectors, and the matrix \(\varvec{\Lambda }\) contains positive eigenvalues. When the EVD is applied, \({{\textbf {Q}}}\) is obtained, and its rows represent orthonormal basis elements, making \({{\textbf {Q}}}\) a unitary transformation. Additionally, \({{\textbf {Q}}}^H={{\textbf {Q}}}^{1}\). \({{\textbf {Q}}}\) creates a reciprocal network, and therefore, it is the designed eigenfilter/diversity decorrelator that modifies the input in a unitary manner to produce an output. The functioning of this filter is thoroughly analyzed in reference [24, 27]. Referring to the output of the \(i_{th}\) branch, the equivalent channel coefficient is expressed as:
where \(\epsilon _{i} \in \varvec{\Lambda }\) and \({{\widehat{\textbf{Q}}}}_{i}\) refers to the \(i_{th}\) column of \({\widehat{\textbf{Q}}}\). \(\widehat{{\widehat{\textbf{h}}}}_{i}\) represents an approximation of the correlated Nakagamim fading channel, which is characterized by a complex channel coefficient. The phase, on the other hand, is uniformly distributed random variable between \((0,2\pi )\) for MPSK.
According to [19], the product \(({{\widehat{\textbf{Q}}}_{i}\widehat{{\widehat{h}}}})\) has entries that are independent of each other. As a result, the correlated paths can be treated as separate branches that have been scaled by eigenvalues. The matrix \({\textbf{Q}}\) is typically computed from matrix \({\textbf{R}}\) or given. Thus, \({\textbf{Q}}\) can be determined without measuring \({\textbf{R}}\), making \({\textbf{Q}}\) blind while \({\textbf{R}}\) does not need to be measured.
Combiner average output SNR
The expression for the probability density function (PDF) of the instantaneous branch SNR for independent signals in channels that undergo fading, as described by the Nakagamim model, can be stated as
where \({\gamma }_{k}{= \alpha }_{k}^{2}\frac{E_{s}}{N_{0k}}\)
The SNR, \({\overline{\gamma }}_{k,s}\), of the channel described in Eq. (9) can be depicted as;
The average output SNR, denoted as \({\overline{\gamma }}_{0,c}\), is calculated to determine the SNR of the combiner’s output. By utilizing the diversity decorrelator, the power distribution of the branch signals is adjusted. Consequently, the output SNRs from the decorrelator, represented as \(({\widehat{{\widehat{\gamma }}}}_{1}\, {\widehat{{\widehat{\gamma }}}}_{2}\,..\ \ {\widehat{{\widehat{\gamma }}}}_{N_{r}})\), contain eigenvalues that are scaled in proportion to the average output SNR (\({\overline{\gamma }}_{0,c}\)) of the particular \(c_{th}\) combiner in use. Thus,
We can express the average output SNR using the individual signals from each branch for MRC and EGC as \({\overline{\gamma }}_{0,c}= \sum _{k = 1}^{N_{r}}{\widehat{{\widehat{\gamma }}}}_{k}\). Moreover, as indicated by Eq. (12), we can express the PDF of the SNR for each branch after passing through the decorrelator as
This represents the SNR of the correlated system.
Synthesizer gains for EGC
Maximumratio combining
The average output SNR for MRC, \({\overline{\gamma }}_{0, \text {MRC}} = \sum _{k = 1}^{N_{r}}{\overline{\gamma }}_{k} = {N_{r}\overline{\gamma }}_{k}\) is given in [4, 31, 32], where \({\overline{\gamma }}_{k}\) is the average SNR of the output signal at the \(k_{th}\) branch and is optimal.
Average SNR approximation for equalgain combining (EGC)
Given independent fading paths and a total of \(N_{r}\) receive antennas, and considering the symbol received at the \(i_{th}\) antenna, \(r_{i}\), the \(i_{th}\) received symbol obtained at the output of the EGC combiner can be expressed as follows:
\(r_{i} = \propto _{i}\sqrt{E_{s}} + n_{i}\) and \(\propto _{i}\) is the stochastic amplitude of the symbol on the \(i_{th}\) path of the \(i_{th}\) antenna. \(E_{s}\) represent the symbol energy, and \(n_{i}\) is the AWGN component at the receiver, with a mean of zero and variance \(\sigma ^{2} =N_0/2\) [33].
The conditional SNR per symbol, \(\gamma _{0, \text {EGC}}\), at the output of the EGC combiner can be calculated according to [5] when symbols are transmitted with equal power as:
Where \(N_{i}\) denotes AWGN that has been added to the signal and has a power spectral density.
The SNR of the output signal in EGC, \(\overline{\gamma }_{0, \text {EGC}}\), which is calculated as an average and expressed as the expectation of (15), is determined for the uncorrelated channels with identical power spectral density of AWGN (\(N_{0}\)) as follows [1]:
The expression for \(E\left[{\acute{r}}^{2} \right]\), where \(r_{i} = \propto _{i}\sqrt{E_{s}} + n_{i}\) represents the \(i_{th}\) symbol received at the \(i_{th}\) antenna and \(r_{j} = \propto _{j}\sqrt{E_{s}} + n_{j}\) represents the \(j_{th}\) symbol received at the \(j_{th}\) antenna (with the superscript removed for simplicity), can be written as:
The aim is to come up with a method that can blindly estimate the SNR without the requirement of transmitting preknown training symbols. Consequently, we devise a SNR estimator that relies on the symbols received. Given that \(\propto\) follows a Nakagamim distribution and considering the value of \(E\left[\propto ^{k} \right]= \frac{\Gamma \left( m + \frac{k}{2} \right) }{m^{k/2}\Gamma \left( m \right) }\), we can infer that \(\ \text {E}\left[\propto ^{2} \right]= \mathrm {\Omega } = 1\) and the expected value of \(E\left[\propto \right]= \frac{\Gamma \left( m + \frac{1}{2} \right) }{\sqrt{m}\Gamma \left( m \right) }\).
Using (17), it can be shown that Eq. (16) can be expressed as
where \(\overline{\gamma }\) is the average SNR in the different diversity branches.
Decorrelation gain for EGC
In a twobranch system, the synthesizer generates four outputs. To calculate the variance of these outputs, [5] can be used, and the average SNR at the output of the EGC combiner can be expressed as
The coefficient \(\rho\) represents the correlation between two random variables, with its range falling between 0 and 1. Consequently, the gains obtained from decorrelation is given as
As the synthesizer has to perform its operation on two branches at any given instance, then \(N_r=2\).
New combiner output SNR
To calculate the average output SNR of the new combiner, we replace \({\widehat{{\widehat{\gamma }}}}_{k,c}\) with an expression that incorporates the average SNR of the received branch, \(\overline{\gamma }\). By using Eqs. (12) and (18), we obtain
Similarly, the MRC average output SNR for each correlated branch can be expressed as
An overall formula can be obtained to describe the MRC and EGC combiners by taking into account the average signaltonoise ratio of each branch. We can merge Eqs. (22) and (23) as
Where
Performance analysis of SER for MPSK under the synthesizer system with correlation
The SER analysis, caused by the fading channel, can be evaluated by averaging the SER of the AWGN channel using the PDF of the fading envelope. To estimate the SER for coherent MPSK signaling over the AWGN channel, one can obtain an approximate expression by employing the nearest neighbor approximation method [32, 34,35,36].
where A is commonly determined by the signal energy and \(d_{min}\) is the minimum distance of the constellation.
The Qfunction, represented as \(Q\left( \sqrt{b\gamma } \right) = \frac{1}{\pi }\int _{0}^{\frac{\pi }{2}}\exp \left(  \frac{b\gamma }{2}\sin ^2\theta \right) d\theta\), where \(b =2 sin^2(\pi /M)\), is defined in [4]. By employing the trapezoidal rule to solve for \(Q\left( \sqrt{b\gamma }\right)\), a simplified closed form of (25) is stated as:
In this context, t corresponds to the count of summations, where \(S_i = 2\sin ^2\theta _i\) and \(\theta _i=\frac{i\pi }{2t}\).
To determine the SER for MPSK in the new system, the SER of an AWGN channel is averaged over the PDF of a Nakagamim fading channel with \(N_{r}\) receive antennas at a given instantaneous SNR [36].
Since \(f_{\gamma }\left( \gamma \right) =\left( \frac{m}{\overline{\gamma }} \right) ^{mN_{r}}\frac{\varvec{\gamma }^{mN_{r}1}}{\Gamma \left( mN_{r} \right) }\exp \left( \frac{m\gamma }{\overline{\gamma }} \right) ,\gamma \ge 0\) for the MRC [37], by substituting this expression in (27), we obtain
The convergence of (28) can be achieved by utilizing the property of the Gamma function as provided in [9, 37, 38]. For \(\propto \ > 0\),
Upon solving Eq. (28) with the help of (29), (28) transforms into
The SER for the new system can be demonstrated to be
By substituting \({\widehat{{\widehat{\gamma }}}}_{k,c}\) with the expressions provided in (12) and (24), results in
Theoretical and simulation results
The study utilizes MonteCarlo simulations to verify the validity of the decorrelation gain equation derived in (21) and the SER equation derived in (32). Additionally, we demonstrate the performance of the virtual receive diversity system using various antenna configurations for the MPSK modulation scheme.
In the legends of the figures, the labels ’Corr’ and ’Decorr’ represent the correlated system and the proposed decorrelated(virtual receive diversity) system, respectively. The term ’Sim’ corresponds to the results obtained from simulations, while ’Theory’ represents outcomes from the analytical framework described in Eq. (32). This study considers fading channels that conform to the Nakagamim distribution and assumes arbitrary correlation, which is modeled using the Bessel model. The correlation model assumes a linear antenna array with a uniform distribution of the angle of arrival (AoA). The correlation coefficient, denoted by \(\rho\), is expressed as [21].
\(J_{0}\) corresponds to the Bessel function of the first kind with a zero order, d signifies the separation distance between antennas, and \(\lambda\) symbolizes the wavelength of the carrier signal.
Figure 2. compares the SER performance of BPSK, 4PSK, 16PSK, and 64PSK modulation schemes with a diversity order of four and an antenna separation distance of \(0.2\lambda\) when \(m=1\). BPSK exhibits the best performance, followed by 4PSK, 16PSK, and 64PSK in terms of SER. For a given SNR, such as 15 dB, the SER values are \(3.666X10^{6}\), \(5.93X10^{5}\), \(2.977X10^{2}\), and 0.236 for BPSK, 4PSK, 16PSK, and 64PSK, respectively. This observation aligns with the wellestablished fact that the SER performance generally deteriorates as the number of phases and symbols increases. This is due to the higher susceptibility of higherorder MPSK schemes to noise and phase errors. Consequently, BPSK typically exhibits better SER performance when compared to higherorder MPSK schemes like 4PSK, 16PSK, and 64PSK.
In Fig. 3., we demonstrate the performance of the virtual receiver diversity by comparing theoretical results of a correlated system and a virtual receiver diversity system for BPSK, 4PSK, 16PSK, and 64PSK, where \(N_r=4\), \(m=1\), and \(d=0.2\lambda\). It can be deduced that the proposed virtual receiver diversity achieves decorrelation gains of approximately 1 dB for the EGC systems. A greater increase in decorrelation gain implies that a reduced SNR is required to achieve an equivalent SER, suggesting improved performance even in the presence of noise.
Figure 4. illustrates the influence of the fading parameter, m, which characterizes the Nakagamim distribution, on the error performance of the MPSK modulation scheme using the proposed virtual receiver diversity decorrelator. The study considered a diversity order of 3 and an antenna spacing equivalent to 0.1 of the wavelength. As anticipated, increasing m resulted in a decrease in SER, while decreasing m had the opposite effect, at a constant SNR. For instance, at a SNR of 20 dB, the SER values were 0.06164, 0.01662, \(1.196X10^{3}\), and \(1.351X10^{4}\) for 16PSK when m was set to 0.5, 1, 3, and 7, respectively. This behavior can be attributed to the Nakagamim distribution becoming more concentrated around its mean value. The increased concentration limits the dispersion of fading effects, resulting in reduced impact on the transmitted signal. Thus, higher values of m indicate a channel less prone to errors, leading to improved SER. Furthermore, it was observed that the simulation and analytical results closely matched for all tested values of fading parameter m, namely 0.5, 1, 3, and 7.
Figure 5. illustrates the effectiveness of the suggested diversity decorrelator by comparing its results with those of a conventional correlated system for 16PSK. A diversity order of 4 and an antenna spacing of \(0.1\lambda\) are taken into account. Tests were conducted to examine varying fading parameters: m = 0.5, 1, 3, and 7. It was observed that the proposed diversity decorrelator achieves decorrelation gains of approximately 1 dB at a SER of \(10^{3}\) for \(m=1\). However, as the value of m increases, the decorrelation gains decrease. For higher values of m, the decorrelation gains become negligible. This is attributed to less severe fading and fewer rapid fluctuations in the received signal power. As m approaches infinity, the channel experiences no fading.
Figure 6. showcases the effectiveness of the diversity decorrelator in terms of performance. The simulation results are compared for \(N_r = 3\), with different antenna spacings. It is anticipated that antennas positioned closer together would exhibit greater signal correlation, leading to a higher SER. This expectation is confirmed by the simulations, as the SER decreases when the antenna spacing changes from \(d=0.1\lambda\) to \(d=0.5\lambda\). Additionally, it is worth noting that the suggested diversity decorrelator achieves approximately 1 dB of decorrelation gain for the EGC combiner systems.
Figure 7 compares the impact of diversity order on the performance of EGC and MRC SER with 16PSK, with \(m=3\) and \(d=0.2\lambda\). According to the graph, the proposed virtual diversity receiver system achieves equivalent error performance to MRC in correlated systems. This can be explained as follows: In channels with significant fading, EGC combines branches with high noise levels, resulting in a significant penalty compared to MRC. However, in balanced channels with low fading, EGC takes full advantage of combining all the “good” branches, approaching the performance of MRC. This can also be attributed to the fact that as fading severity decreases, the relative weights of MRC approach unity, which are the EGC weights. One key finding is that instead of using the computationally complex MRC combining, EGC can be employed with the diversity decorrelator to achieve similar gains.
Conclusion
A virtual receiver diversity decorrelator that does not require the measurement of signal information from a correlated system has been analyzed for MPSK signals using coherent EGC reception. The virtual receiver diversity decorrelator achieves decorrelation gains for EGC in channels that follow the Nakagamim statistical distribution. The decorrelation gain obtained depends on the fading parameter m. Additionally, a decorrelation gain expression is derived for EGC reception in MPSK correlated signals in channels experiencing fading according to the Nakagamim distribution. Finally, the decorrelation gain expression derived is integrated into the derived SER expression for EGC to obtain the overall SER expression for the virtual receiver diversity decorrelator. The SER for the virtual receiver diversity decorrelator is validated through Monte Carlo simulation results. The expression results are found to be tightly bound to the simulation results. It is also demonstrated that the performance of EGC approaches the performance of MRC. An important outcome is that the utilization of the computationally complex MRC can be replaced by the implementation of EGC to achieve equivalent benefits, particularly in cases where the diversity decorrelator is engaged. Nevertheless, the developed decorrelator exhibits certain limitations. Owing to correlations between the sum and difference signals, the resultant decorrelated outputs, referred to as conjoint signals, do not demonstrate complete mutual independence. Thus, the decorrelator solely mitigates the extent of correlation.
Availability of data and materials
The research findings in this paper are backed by openly accessible data that can be produced through Monte Carlo simulations. Additionally, you can acquire the data by reaching out to the corresponding author.
Code availability
The code can be obtained by contacting the corresponding author upon reasonable request.
Abbreviations
 AfDB:

African development bank
 AoA:

Angle of arrival
 AWGN:

Additive white Gaussian noise
 BPSK:

Binary phase shift keying
 DFT:

Discrete fourier transform
 FFT:

Fast fourier transform
 EGC:

Equal gain combining
 EVD:

Eigenvalue decomposition
 KLTK:

KarhunenLoeve transformation
 MPSK:

Mary phaseshift keying
 MRC:

Maximumratio combining
 PDF:

Probability density function
 PCA:

Principal component analysis
 SC:

Selection combining
 SER:

Symbol error rate
 SIMO:

Singleinput multipleoutput
 SLC:

Square law combining
 SNR:

Signaltonoise ratio
 SSC:

Switch and stay combining
 UCA:

Uniform circular array
References
Ayeni O, Ojo J, Owolawi P, Ajewole M (2023) Performance comparison of diversity techniques with addictive white gaussian channel (awgc) in free space optical communication (fso) under atmospheric turbulence scenario. Int J Phys Sci 18(1):12–18. https://doi.org/10.5897/IJPS2020.4896
Lin J, Poor HV (2020) Optimum combiner for spatially correlated nakagamim fading channels. IEEE Trans Wireless Commun 20(2):771–784. https://doi.org/10.1109/TWC.2020.3028284
Olutayo A, Cheng J, Holzman J (2020) Performance bounds for diversity receptions over a new fading model with arbitrary branch correlation. EURASIP J on Wireless Commun Netw. https://doi.org/10.1186/s13638020017055
Rao D (2019) Channel coding techniques for wireless communications. Springer, Singapore. https://doi.org/10.1007/9789811505614
Akuon P, Xu H (2017) Gain of spatial diversity with conjoint signals. IEEE Africon 2017 Proceedings, Cape Town, South Africa, 110–114. https://doi.org/10.1109/AFRCON.2017.8095465
Zhou B, Yang F, Cheng J, et al. (2016) Performance bounds for diversity receptions over arbitrarily correlated nakagamim fading channels. IEEE Trans Commun 15(1):699–713
Dwivedi VK, Singh G (2003) Errorrate analysis of the ofdm for correlated nakagami m fading channel by using maximalratio combining diversity. Int J Microw Wirel Technol 3(6):717–726. https://doi.org/10.1017/S1759078711000742
Akansu AN, Torun MU (2012) Toeplitz approximation to empirical correlation matrix of asset returns: a signal processing perspective. IEEE J Selected Topics in Signal Process 6(4):319–324. https://doi.org/10.1109/JSTSP.2012.2204724
N, K, (2019) A review of selection combining receivers over correlated rician fading. ElsevierDigital Signal Process 88:1–22
Hangani S, Beaulieu NC (2008) On the benefits of decorrelation in dualbranch diversity. IEEE International Conference on Communications (ICC), 4696–4702. https://doi.org/10.1109/ICC.2008.880
Dong X, Beaulieu NC (2002) Optimal maximal ratio combining with correlated diversity branches. IEEE Commun Lett 6:22–24
Xu H, Akuon P (2002) A receive decorrelator for a wireless communications system. Patent 2 016 733 215. [Online]. Available: https://patents.google.com/patent/WO2017001995A1/en
Pan Y, Zhou Y, Liu W, Ni L (2020) A Generalization of Principal Component Analysis. IEEE Explorer
Li M, Zhang F, Ji Y, Fan W (2022) Virtual antenna array with directional antennas for millimeterwave channel characterization. IEEE Trans Antennas Propag 70(8):6992–7003. https://doi.org/10.1109/TAP.2022.3161334
Alibakhshikenari M, Virdee B, Mariyanayagam D, al, (2023) Virtual antenna array for reduced energy per bit transmission at sub5 ghz mobile wireless communication systems. Elsevier Alexandria Eng J 71:439–450
Wang Y, Chen X, Liu X (2021) al: Improvement of diversity and capacity of mimo system using scatterer array. IEEE Trans Antennas Propag 70(1):789–794. https://doi.org/10.1109/TAP.2021.3098568
Beaulieu NC (2008) Preprocessor for receiver antenna diversity,. Patent 08 748 200. [Online]. Available: https://patents.google.com/patent/WO2008144879A1/en
AlJuboori S, Fernando X (2019) Characterizing a decorrelator for selection combining receivers in nakagamim fading channels. AEU  Int J Electron Commun 106:12–19
Fang L, Bi G, Kot AC (2000) New method of performance analysis for diversity reception with correlated rayleighfading signals. IEEE Trans Veh Technol 49:1807–1812
Loyka S, Tellambura C, Kouki A, et al. (2000) New method of performance analysis for diversity reception with correlated rayleighfading signals. IEEE Trans Veh Technol 49:1807–1812
Haghani S, Beaulieu C (2009) On decorrelation in dualbranch diversity systems. IEEE Trans Commun 51(7):12–19
Karagiannidis G, Zogas D, Kostopoulos S (2003) Performance analysis of triple selection diversity over exponentially correlated nakagamim fading channels. IEEE Trans Commun 51:1245–1248
Chen Y, ellambura C, (2004) Distribution functions of selection combiner output in equally correlated rayleigh, rician, and nakagamim fading channels. IEEE Trans Commun 52:1948–1956. https://doi.org/10.1109/TCOMM.2004.836596
Akuon P, Xu H (2016) Optimal error analysis of receive diversity schemes on arbitrarily correlated rayleigh fading channels. IET Commun 10:854–861. https://doi.org/10.1049/ietcom.2015.0965
Karagiannidis G, Zogas D, Kostopoulos S (2004) Ber performance of dual predetection egc in correlated nakagamim fading. IEEE Trans Commun 52:50–53. https://doi.org/10.1109/TCOMM.2003.822166
Omosa E, Akuon P, Kalecha V, (2019) Reedsolomon(rs) coding gain on correlated rayleigh fading. (2019) IEEE Africon. IEEE Xplore. https://doi.org/10.1109/AFRICON46755.2019.9133926
Zhang F, Ngo K, Yang S, Nosratinia A (2022) Transmit correlation diversity: generalization, new techniques, and improved bounds. IEEE Trans Inf Theory 68(6):3841–3869. https://doi.org/10.1109/TIT.2022.3146523
Aksoy E (2020) Advances in Array Optimization. IntechOpen, lLndon. https://doi.org/10.5772/intechopen.83276
Horn R, Johnson C (2013) Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511810817
Moon T, Stirling W (2000) Mathematical methods and algorithms for signal processing, 1st edn. PrenticeHall, New Jersey
Tsai M, Bashir M, Alouini M (2022) Data combining schemes for a detector array receiver in freespace optical communications. IEEE Open J Commun Soc 3:1090–1102. https://doi.org/10.1109/OJCOMS.2022.3181812
Simon M, Alouini SM (2004) Digital Commun Over Fading Channels, 2nd edn. WileyIEEE Press, New York
García FA, Mora HC, Garzón NO (2022) Improved exact evaluation of equalgain diversity receivers in rayleigh fading channels. IEEE Access 10:26974–26984. https://doi.org/10.1109/ACCESS.2022.3157752
AlAnbagi H, Vertat I (2020) Collaborative Network of Ground Stations with a Virtual Platform to Perform Diversity Combining. IEEE Explorer. https://doi.org/10.1109/AE54730.2022.9920037
Rugini L (2020) Sep bounds for mpsk with low snr. IEEE Commun Lett 24(11):2473–2477. https://doi.org/10.1109/LCOMM.2020.3012837
Jia Y, Wang Z, Yu J, Kam P (2023) A new approach to deriving closedform bit error probability expressions of mpsk signals. IEEE Trans Commun. https://doi.org/10.1109/TCOMM.2023.32802187
Adachia F, Boonkajay A (2019) Analysis of maximalratio transmit and combining spatial diversity. IEICE Commun Exp 8(5):153–159. https://doi.org/10.1587/comex.2019XBL0015
Laforgia A, Natalini P (2013) Exponential, gamma and polygamma functions: simple proofs of classical and new inequalities. ElsevierJ Math Anal Appl 407(2):495–504. https://doi.org/10.1016/j.jmaa.2013.05.045
Acknowledgements
The authors express their gratitude to their departments for offering research environments and resources that facilitated the execution of this study.
Funding
The study received partial funding from the African Development Bank (AfDB) in collaboration with the Kenyan Ministry of Education.
Author information
Authors and Affiliations
Contributions
EO: Wrote the original draft, derived the analytical framework, and validated it through Monte Carlo simulations. PA: Developed the initial research idea, supervised the research, oversaw the research process, and coordinated activities among coauthors. JX: Edited and revised the manuscript to improve clarity and accuracy. VO: Critically reviewed the research paper, providing constructive feedback and suggestions that improved the paper. Each author reviewed and endorsed the final version of the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The researchers involved in this study assert that they possess no financial or personal interests that could potentially sway the research outcomes or interpretations when publishing the paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Omosa, E., Akuon, P., Xu, H. et al. Characterization of the coding gain for MPSK with conjoint signals under correlated Nakagamim fading channels. Journal of Electrical Systems and Inf Technol 10, 46 (2023). https://doi.org/10.1186/s43067023001131
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s43067023001131