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Introduction
In this modern world, HVDC system provides a secure and stable asynchronous inter-
connection of power grids that operate on different frequencies. In addition, HVDC pro-
vides instant and precise control of power flow. HVDC transmission is becoming more 
popular in the present scenario of bulk power transmission over long-distances, it is 
necessary to study the testing of various insulation materials. To get HVDC output from 
a smaller input voltage many methods have been utilized to perform this task. Some 
of the most common methods used to produce a voltage larger than the power supply 
voltage are step-up transformers [1], voltage doublers [2, 3], multiplier circuits [4–6], 
charge pump circuits [7], switched-capacitor circuits [8] and boost or step-up convert-
ers [9]. High voltage conversion ratio is becoming increasingly essential in a multitude 
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Decades after the invention of the Cockcroft–Walton voltage multiplier, it is still being 
used in broad range of high voltage and ac to dc applications. High voltage ratio and 
high efficiency are its main features. Due to the limitations of original circuit, reduc-
ing the output ripple and increasing the accessible voltage level motivated scientists 
to propose new topologies. However, over the worldwide bibliography, most of 
Cockcroft-Walton voltage designers persist in using equal capacitances in every stage 
without considering an optimal design. The aim of this paper is to do a comparative 
study of the design and simulation of a fixed model (conventional model used by most 
authors) and a variable model (new design) of generating High Voltage Direct Current 
(HVDC) based on Cockcroft–Walton voltage multiplier that stresses on the choice of 
the adequate capacitance values to reduce the output voltage drop, produce less rip-
ple and the calculations of the optimal number of stages that is necessary to produce 
the desired output voltage with a better performance. The generation of HVDC based 
on Cockcroft–Walton voltage multiplier and an eight stage was used for simulations 
and theoretical analysis which yielded up to 4.4 kV DC from an input voltage of 230 V, 
50 Hz ac supply. The results are compiled from the simulations done on MATLAB/SIM-
ULINK, by the designs and simulations characteristics of the models the performances, 
output voltages and ripple voltages per stage have been compared.
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of industrial and laboratory research applications [10, 11], such as front-end stages for 
batteries or photovoltaic sources, DC backup systems, UPS devices, step down invert-
ers and many more. Voltage Multipliers and especially the half-wave Cockcroft–Walton 
voltage multiplier are at the forefront of these applications and methods [12–14]. The 
diode capacitor topologies are more suitable [15]. In 1920 Greinacher, a young physicist 
published a circuit [16] which was improved in 1932 by a British physicists John Doug-
las Cockcroft and Irish physicists Ernest Thomas Sinton Walton to produce high-energy 
positive ions [17]. Cockcroft and Walton invented the Cockcroft-Walton voltage multi-
plier (CWVM).

Cockcroft–Walton voltage multiplier
Voltage multiplier circuits are primarily used to develop high voltages where low current 
is required. The output voltage of voltage multiplier circuits may be several times more 
than the input voltage. For this reason, voltage multipliers are used in special applica-
tions where load is constant and has high impedance or where the stability of the input 
voltage is not critical. The advancement in studies focus on different hardware circuits 
that can offer high voltage conversion ratio, small output voltage ripple, high efficiency, 
simple design and low cost. Among these, the Half Wave CWVM is highly used as AC to 
DC convertor [18]. A half wave voltage doubler is shown in Fig. 1.

During the first half of the supply period, diode D1 is turned on and diode D2 is turned 
off, capacitor C1 is being charged to the peak value of input voltage. During the second 
half cycle, diode D2 is turned on and diode D1 is turned off, charging capacitor C2 to the 
twice the peak value of input voltage because capacitor C1 (charged to Vs) and input 
voltage (Vs) now act as series aiding voltage source. When input voltage returns to its 
original polarity, diode D2 is again reverse biased (off), and then the capacitor C2 will 
be discharged through the load R. The time constant RC2 is so adjusted that C2 has little 
time to lose any of its charge before the input polarity reverses again. During the nega-
tive half cycle, diode D2 is turned on, capacitor C2 will be recharged again until voltage 

Fig. 1  Half wave voltage doubler [19]
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across it is again equal to 2Vs. Cockcroft-Walton Voltage value increases as it goes 
through each stage of the voltage multiplier. Multipliers are made up of multiple stages, 
they may be classified as voltage doublers, triplers, quadruplers, etc. The classification 
depends on the ratio between the output voltage and the input voltage.

Design of the multiplier circuit
Diode selection

Diode at each level of the voltage multiplier performs two major operations as firstly, it 
conducts to discharge every capacitor at each level and secondly it blocks the reverse 
voltage to prevent the unwanted conduction [20]. To choose our diode the following 
basic device parameter must be considered.

•	 Repetitive peak reverse voltage

Multiplier circuit reverse voltage seen by each diode is 2Vm in Cockcroft-Walton volt-
age multiplier. So, the device must be selected with reverse voltage (VRRM) setting of 
at least 2Vm. Therefore, we have to select the diode voltage rating 2Vmax for the safety 
purpose [4].

•	 Frequency of input signal

While selecting the diodes for the rectifier, the frequency of input voltage to the multi-
plier circuit must be considered. For symmetrical input signals, the device chosen must 
be capable of switching at speed faster than the rise and fall times of the input [21]. If 
the reverse recovery time is too long, the efficiency and regulation of the device will be 
affected. In the worst-case insufficient recovery speed will result in accessing heating of 
device. In this case, the device will be permanently damaged. The reverse recovery time 
is conditioned by the circuit and the conditions used to make the measurement. Reverse 
recovery Time specification should be used for qualitative, not quantitative purposes 
since condition specified for the measurement rarely reflects those found in actual real 
life circuit operation [4]. Decreasing current flow in the multiplier circuit allows higher 
input frequency to be used. An increase in current flow has been the opposite effect. 
Ideally, the network load multiplier should draw no current.

•	 Peak forward surge current (Ifsm)

Most rectifier diodes have a peak forward surge current rating. This value (rating) cor-
responds to the maximum peak value of single sinusoidal half-wave which, when super-
imposed on the nominal load current of the device, can be conducted without damaging 
of rectifier. This value becomes important when considering the large capacitance asso-
ciated with multiplier network. Due to the capacitive loading effects on the rectifier, 
surge currents can be produced. With a high step-up turn ratio of the transformer, 
capacitor C1 on the secondary side is considered to be the largest one. Its value can be 
determined as follows:

(1)C ′
1 = NC1
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Where;C1 = first multiplier circuit capacitance,

N = turns ratio of high voltage transformerN2
N1

.
When the circuit is turned on, large current develops in the primary side as this effec-

tive capacitance begins to charge. On the secondary side, large surge current can flow 
through the rectifiers during initial capacitor charging at turn on. The addition of a 
series resistance Rs can greatly reduce these current surges as well as those in the pri-
mary circuitry.

•	 Forward current (IO)

In ideal multiplier circuits, the load will draw no current. Ideally, large current flow 
through the rectifier occurs during capacitor charging. Therefore, device with very low 
current rating (100 mA) and in case of cables. Micro amperes are also used. It must be 
noted that forward current and forward surge current rating are related [4]. Both are the 
function of silicon die area. It is truly speaking that device with a high surge current rat-
ing Ifsm will also have high forward current IO rating and vice versa.

•	 Forward voltage (V f )

In practice the forward voltage drops V f  of the rectifier does not have a significant 
effect on multiplier networks on the overall efficiency [4]. The calculation of the voltage 
drop is given by Eq. (3). For a half wave doubler (two stages) multiplier having an output 
voltage of 8000 V, and considering a forward voltage drop of the rectifier diodes as 2 V 
(for a forward current of 100 mA), its voltage drop is 0.05%.

Capacitor selection

The size of capacitors used in multiplier circuit is proportional to the frequency of input 
signal. Capacitor used in off line, 50  Hz application is typically in the range of 1.0 to 
200 microfarad. The rated voltage of capacitor is determined by the type of multiplier 
circuit. The capacitor must be able to withstand a maximum voltage depending upon 
the numbers of staged used. A good thumb rule is to choose capacitor whose voltage 
rating is approximately twice that of actual peak applied voltage. Due to the AC imped-
ance of the capacitors, there is a voltage drop Vdrop and a peak-to-peak voltage ripple δV  
when the circuit is loaded [22–24]. Based on the theoretical analysis and the assumption 
presented in [22, 25, 26], the ratio X of the output voltage Vout over Vmax the maximum 
value of the sinusoidal input supply voltage, is given by the equations;

C ′
1 = Referred capacitance on primary side

(2)Rs = VPeak
/

Ifsm

(3)Voltage drop = No. of stages ∗
(

Forward voltage
/

Output voltage in V

)

∗ 100

(4)
Vout

Vmax
= X = Xnl −

1

Vmax

(

Vdrop +
1

2
δV

)
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where Xnl is the no-load voltage ratio,n the number of stages, f the frequency of the volt-
age supply, Il the average value of the load current and

For the Fixed selection of capacitors;

and for the Variable selection of capacitors

where i is the number of every stage and C the capacitance of the last stage (base capaci-
tance). Considering that the total capacitance Ctot is the sum of all the capacitances of 
each topology

Voltage gain for the two models can be calculated as a function of Ctot.

Figure 2 provides information of the gain X = Vout
Vmax

 of the Fixed and Variable model 
against the number of stages for a fixed value of g

f×Ctot
.

(5)Xnl =
Vout,nl

Vmax
= 2n

(6)
Vout

Vmax
=

g

f

(

n
∑

i=1

(n+ 1− i)2

C2i−1
+

n−1
∑

i=1

(n+ 1− 1)(n− 1)

C2i

)

(7)
δV

Vmax
=

g

f

n
∑

i=1

(n+ 1− i)

C2i

(8)g =
Il

Vmax

(9)C2i = C2i−1 = C

(10)C2i = C2i−1 = (n+ 1− i)C

(11)Ctot =
n

∑

i=1

Ci

(12)Fixed model : X = 2n−

(

g

f × Ctot
×

n
(

8n3 + 9n2 + n
)

6

)

(13)And Ctot = 2nC

(14)Variable model : X = 2n−
(

g

f × Ctot
×

n2(n+ 1)(2n+ 1)

2

)

(15)And Ctot = n(n+ 1)C
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Selection of number of stages

•	 Fixed model selection of number of stages

The selection of the number of stages in a Cockcroft Walton voltage multiplier circuit 
depends the desired output level. For fixed values of capacitances in the various stages, 
the number of stages should be in accordance with the required output voltage and 
the voltage drop till last stage [27]. The equation to calculate the number of stages is as 
follows:

where;

If we gets the value in fraction in the above equation then consider the nearest greater 
integer for the selection of the number of stages.

•	 Variable model selection of number of stages

Cockcroft-Walton output voltage as a function of number of stages n, peak input volt-
age Vmax , output current Il , and product fc of frequency f  and capacitance c [23].

(16)n =
Vout + Vdrop

2× Vpeak

n = Number of stages

Vout = Output Voltage

Vdrop = Voltage drop till last stage

Vpeak = Input peak voltage

(17)Vout = 2nVmax − Vdrop

Fig. 2  The gain X as a function of the Number of stages, n for the different models
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From the Vout expression, due to the fast growth of the n3 term in the negative term 
(voltage drop relative to the no-load value), if n starts from zero and increases without 
changing other parameters, Vout first increases, then reaches a peak, and then decreases 
[28]. The derivative of Vout with respect to n is zero at peak Vout deriving the optimum 
number of stages (Fig. 3).

Optimum n depends on input and output voltages Vmax , and Vout  only, not on output 
current nor frequency or capacitance. Knowing the ratio of Vout to Vmax which is X , nopt 
can further be simplified as:

Ripple factor and ripple voltage

•	 Ripple voltage for Fixed model

Ripple of the n-stage multiplier for the Fixed model will be [4];

(18)Vdrop =
Il

6fc

(

4n3 + 3n2 − n
)

(19)Vout = 2nVmax −
Il

6fc

(

4n3 + 3n2 − n
)

(20)

nopt =
1

8Vmax
(−Vmax + 2Vout + 2(Vmax + 2Vout) cos

[

1

3
ArcTan

[

4Vmax

√
Vout(2Vmax + Vout)(−Vmax + 2Vout)(Vmax + 14Vout)

−V 3
max − 22V 2

maxVout + 12VmaxV
2
out + 8V 3

out

]])

(21)

nopt =
1

8

(

−1+ 2X + (2+ 4X)cos

[

1

3
ArcTan

[

4
√
X(2+ X)(−1+ 2X)(1+ 14X)

−1+ 2X(−11+ 6X + 6X2

]])

(22)2δV = q

2n
∑

n=2

1

Cn

Fig. 3  Variation of Ripple with number of stages in CWVM
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For n stage total ripple is given by;

For C2n = C2n−2 = C2n−4 = C2n−6 = . . . = C2 = C

•	 Ripple voltage for Variable model

Ripple of the n-stage multiplier for the Variable model is given as

Ripple voltage is the magnitude of fluctuation in DC output voltage at a specific output cur-
rent (assuming AC input voltage and AC input frequency are constant) [29]. In addition, rip-
ple is function of number of stages and the switching frequency for a fixed capacitor design. 
Hence, varying frequency ripple can be reduced and can be treated as high frequency switch-
ing of CWVM network [30]. For pertaining the same threshold Fig. 4 provides information 
regarding variation of ripple with respect to the various frequency level.

Voltage drop for fixed and variable model

Generally, in order to reduce the complexity of the circuit equations, the calculation 
of the diode voltage drop is neglected. Also, parasitic effect of diode and capacitor is 

(23)q = IT

(24)q =
I

f

(25)2δV = q

(

1

C2n
+

2

C2n−2
+

3

C2n−4
+

4

C2n−6
+ . . .+

n

C2

)

(26)⇒ δV =
I

2fC

(

n(n+ 1)

2

)

=
I

fC

(

n(n+ 1)

4

)

(27)δV =
n× Il

fC

Fig. 4  Ripple Voltage in CWVM against different frequencies
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neglected as its contribution is very small in the system. There are two modes of opera-
tion of CWVM the no load operation and operation under loaded condition [30]. There 
is drop due to internal behavior and load applied when the load is connected. This drop 
(considerably high) reduces the output voltage significantly.

Total drop is:

•	 For the Fixed model

On solving for each stage drop, the Fixed model drop gives us [31];

Adding all n voltage drops gives the total voltage drop on load:

•	 For the Variable model

The total voltage drop [23] for the variable model gives us;

(28)�V = �Vn +�Vn−1 +�Vn−2 + · · · +�V1

(28a)�V2 =
q

C
n

(28b)�V4 =
q

C
[2n+ (n− 1)]

(28c)�V2n =
q

C
[2n+ 2(n− 1)]+ · · · + 2× 2+ 1]

(29)�Vtotal =
q

C

[

2

3
n3 +

1

2
n2 −

n

6

]

(30)�Vtotal =
I

fC

[

2

3
n3 +

1

2
n2 −

n

6

]

Fig. 5  Variation of Voltage Drop for a fixed frequency
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Table 1  Simulation parameters of the HVDC

No Input voltage Input frequency Number of stages, n Transformer Secondary 
voltage

Capacitor

1 230 V 50 Hz 8 230 V 150µF

Fixed Model design

2 C1 = C2 = C3 = C4 = . . . = C15 = 150µF

Variable Model

3 C1 = C2 = 1200µF ,

C2 = C3 = 1050µF ,  
C4 = C5 = 900µF ,   
C6 = C7 = 750µF , 
C8 = C9 = 600µF , 
C10 = C11 = 450µF , 
C12 = C13 = 300µF ,

C14 = C15 = 150µF ,

Fig. 6  HVDC Circuit diagram for a single Model

Fig. 7  Output voltage for the fifth stage through the eighth stage
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Figure 5 shows us the Variation of Voltage drop against a fixed frequency.

Simulations
The parameters for the simulation are presented in the table below (Table 1):

Circuit diagram

See Fig. 6

(31)�Vtotal =
n2I

f × C

Fig. 8  Rising time, transient and steady state value of output voltage of stages five and six of both models
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Fig. 9  Settling time, transient and steady state value of output voltage of stages five and six of both models

Comparison of the fixed capacitors model and the variable capacitors model

Here the output voltage, performance and the ripple voltage of both systems will are 
compared.

•	 Output voltage comparison

From the simulation results show in Fig.  7, it is clear that the output voltage of the 
Variable capacitors model is greater than that of the fixed capacitors model. From stages 
5 to 8, the increase in the output voltage is from 250 to 500 V.

Performance comparison
From the output waveform, the rising and settling times of the fixed capacitors model 
and the variable capacitors model can be compared below;

From the simulation results and the values. It is clear that the Variable model is more 
rapid than the fixed model, both models are stable. Therefore, the Variable model is 
more performant than the fixed model (Figs. 8, 9, 10, 11 and 12).
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•	 Voltage ripple comparison

From the simulation and the output waveform the voltage ripple of the Fixed and Vari-
able model is presented:

Steady-state ripple of the generated HVDC versus time for stage five through stage 
eight of both models. From the ripple it is clear that the voltage ripple of the Variable 
model is lesser than that of the fixed model and for both models the higher the stage 
there is an increase in the voltage ripple.

Conclusion
In this work, the design and simulation of two methods are presented based on Cock-
croft-Walton Voltage multiplier. The output voltage, performance and voltage ripple 
were compared for the two different models. A theoretical analysis is held that produced 
new and improved equations about Cockcroft-Walton’s voltage gain as well as new 

Fig. 10  Rising time, transient and steady state value of output voltage of stage seven and eight of both 
models
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formulas are introduced that give the Optimal number of stages that provide the proper 
voltage gain. The theoretical analysis and the simulation in MATLAB/ SIMULINK 
R2015b reveals that the Variable model is an Optimal design of the Cockcroft-Walton 
voltage multiplier due to its higher performance, higher output voltage per stage and a 
less voltage ripple.

When higher magnitude of output high voltage DC supply is required without chang-
ing the input transformer voltage level, the Cockcroft-Walton Voltage multiplier circuit 
is used. It is used only in special applications where the input voltage stability is not criti-
cal. This kind of high voltage DC power supply test set is of simple control; low cost, 
portable due to its light weight robust and high reliability. Different high voltage DC out-
put magnitudes are taken from different stages without changing the input voltage.

Fig. 11  Settling time, transient and steady state value of output voltage of stage one and two of both 
models



Page 15 of 17Kenfack et al. Journal of Electrical Systems and Inf Technol            (2022) 9:10 	

Our work can be enhanced to generate an HVDC up to the range of 25–50  kV 
by increasing the number of stages thus it will be very useful for field testing of HV 
cables of different voltage grade, as a DC source for impulse charging unit of impulse 
generators.
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