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Introduction
Circular bit rotation is an operation where bits are moved in a circular fashion such that 
bits change their positional values and do not fall off, but rather are placed back to the 
other end [1, 2]. A left rotation operation is where bits that fall off at the left end are 
placed back at the right end [1, 2]. In a right rotation operation, bits that fall off at the 
right end are placed back at the left end [1, 2]. A shift operation that is circular seeks to 
rearrange the entries present in a data structure by moving the bit to the next position 
whiles the last bit is moved to the position of the first bit [1, 2]. Elimination of bits is not 
done by the rotate instructions. For a left rotate (rol), as shown in Fig. 1, bits shifted off 
the left end of a data word fill the vacated positions on the right. Likewise, for a right 
rotate (ror), bits “falling off” the right end appear in the vacated positions at left [1, 2].

The bit sequence 00010111 rotated circularly to the left by one bit position produces 
the bit sequence 00101110 in Fig. 1 above. No bits are lost after the rotational operation 
or process [1, 2].

With reference to Fig. 2, if the bit sequence 00010111 were subjected to a circular shift 
of one bit position to the right would yield: 10001011 [1, 2].
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The concept of circular bit rotation is made clearer by the example below. Assum-
ing we have an 8 bit sequence, say 11100101, moving the bits by 3 places to the 
left produces 00101111 bit sequence. This implies that the first 3 bits are placed 
back at the end of the bit sequence. Moving the bits in the original bit sequence 
by 3 places to the right produces 10111100 bit sequence. This implies that the 
last 3 bits are placed back at the beginning of the bit sequence. If we have a 16 bit 
sequence, say 0000000001110010, moving the bits by 3 places to the left produces 
0000001110010000 bit sequence. Moving the bits in the original bit sequence by 3 
places to the right produces 0100000000001110 bit sequence [1, 2].

A number of cryptographic researchers used the logical XOR gate (digital logical 
gate which performs a logical operation on one or more logic inputs and produces a 
single logic output) or operation in their encryption protocols [3, 4].

Rotators and shifter move bits and multiply or divide by powers of 2. A shifter shifts 
a number in base 2 left or right by some specified number of positions. Some com-
monly used shifter kinds include; Logical shifter, Arithmetic shifter and Rotator [5, 6]. 
Logical shifter shifts the number to the left (LSL) or right (LSR) and fills empty spots 
or positions with zeros. Ex: 11001 LSL 2 = 00100, 11001 LSR 2 = 00110. The arithme-
tic shifter operates just like the logical shifter but with some slight operation differ-
ence [5, 6]. On the right shift, it fills the most significant bit (msb) with a copy of the 
old significant bit, which is vital or key for dividing and multiplying signed numbers. 
Arithmetic shift left works the same as the logical shift left. Ex: 11001 ROR 2 = 01110; 
11001 ROL 2 = 00111. Rotators rotate the bit string in a circle such that empty spots 
are filled with bits shifted off the other end. Ex: 11001 ROR 2 = 01110; 11001 ROL 
2 = 00111 [5, 6].

A shifter that perform left shifts, logical and arithmetic right shifts, or no shift is 
shown in Fig. 3 below from a classical perspective [7].

In 2008, Renesas Electronics Corporation demonstrated a method for decreas-
ing the time taken by a H8 CPU in performing an 8 bit rotate from LSB first to 

Fig. 1  Rotate left diagram [1, 2]

Fig. 2  Rotate right diagram [1, 2]
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MSB first. This approach has two methods for completing an 8 bit rotate. The first 
method employs a look up table; the second rotates physically the data from MSB 
first to LSB first [8].

The OR, AND, NOT and XOR are simple bit-parallel operations supported in 
word-oriented processors. They are logical operations that are typically imple-
mented with integer arithmetic operations in computer system, specifically the 
arithmetic and logic unit, which is the most basic functional unit in a processor. In 
bit rotations, shifter and mix operations can be used [9].

The standard set of bitwise operations, including OR, AND, XOR, LEFT/RIGHT 
SHIFT, NOT, is incorporated or available in the C and C++ programming lan-
guages. However, circular shift is excluded in the language [10]. When a computer 
integer is rotated, any bit that falls off one end of the register is moved to the other 
end as if they are connected end-to-end in a conceptual manner. Circular rotation 
has some applications in cryptography, for the purposes of encryption and decryp-
tion [10].

Bennett disclosed the secret of saving energy by maintaining a unique mapping 
between input and output vectors called logical reversibility of computation [11]. A 
reversible circuit is composed of reversible gates only whereas a reversible gate has 
the property of maintaining one-to-one mapping between input and output vectors. 
Among the conventional logic gates, NOT operation is the only one which itself 
is reversible. However, the other conventional logic operations have their reversi-
ble counterpart, which is known as n × n dimensional reversible gate. In designing 
reversible circuits, there exist 2 × 2 and several 3 × 3 gates [12–14]. A typical exam-
ple of the 2 × 2 gate is the Feynman gate [12]. Fredkin gate [14] and Feynman double 
gate [13] are examples of 3 × 3 gates.

Muwafi et al. also proposed a circuit for rotating, left shifting, or right shifting bit 
where a circuit for rotating bits of an input word during a single cycle, by duplicat-
ing the input word to form an extended word, shifting bits of the extended word, and 
selecting a subset of the shifted bits of the extended word [15].

Fig. 3  A shifter that performs left shifts, logical and arithmetic right shifts, or no shift [7]
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Application

Bit rotation is employed in barrel shifters (a logic circuits extensively used in embed-
ded digital signal processors as well as in general purpose processors to manipulate 
the data as rotating and shifting information is required in few fields including bit-
indexing, arithmetic tasks and variable-length coding) [16, 17]. Bharathesh et al. pro-
posed a low power mux based on dynamic barrel shifter using footed diode domino 
logic [16, 17]. There are bidirectional barrel shifters that can perform six unique tasks: 
shift right arithmetic (SRA), shift right logical (SRL), rotate left (RL), shift left logical 
(SLL), shift left arithmetic (SLA), and rotate right (RR) [16, 17].

Shah et al. designed a fully custom 8 bit barrel shifter using 8 × 1 multiplexer with 
the help of GDI technique. The barrel shifter is simply a bit-rotating shift register [18]. 
A robust architecture of logarithmic barrel shifter that performs bidirectional arith-
metic and logical shifting, including rotate operation [19]. Aarthi et al. conducted an 
image encryption using binary bit plane and rotation method for an image security. 
Yeng et al. also used the concept of bit rotation to design an encryption algorithm [2, 
20]. A new universal hash function, circulant hash based on bit rotation was proposed 
and is a variant of the classical random matrix-based hash of Carter and Wegman, 
called H3, and Toeplitz hash by Krawczyk [21]. An encryption approach for Images 
using Bits Rotation Reversal and Extended Hill Cipher Technique was also devised 
[22] as well as an Adaptive Bit Rotation and Inversion Scoring, a novel approach to 
LSB Image Steganography [23].

Quantum perspective

In quantum computing, unit of data is called qubit and the value of qubit is the super-
position of |0> and |1> . Every quantum operation is reversible if it is represented by 
a unitary matrix which is used to multiply the state of qubit(s) that produces out-
put [24]. Quantum computers process data by applying a universal set of quantum 
gates that can emulate any rotation of the quantum state vector [25]. The comparative 
quantum realization of any reversible circuit is used to verify the operability of that 
circuit [19].

A quantum circuit called quantum shift register in which shift and rotation opera-
tions on qubits are performed by swap gates and controlled swap gates. For quantum 
computers to perform arithmetic operations that are elementary (bitwise comparison 
of qubits and multiplication), these operations are of essence [26].

Rotation operators are defined as Rx, Ry and Rz and are shown in Fig. 4 below.
When the Pauli matrices are exponentiated, rotation operators are generated 

according to exp (iAx) = cos(x) I + I sin(x) A, where A is one of the three Pauli Matri-
ces [27, 28].

Problem, objective and contribution

The current or existing circular bit rotation techniques never ends because it is in a 
cycle and is continuous. Unlike a logical shift, the vacant bit positions are not filled 
in with zeros but are filled in with the bits that are shifted out of the sequence [29]. 
Repetition of bit strings tend to show up at some point when the bit string is rotated 
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circularly using shifts progressively and this poses as a weakness and danger, even 
to computing and cryptography [2]. For the quantum–classical perspective also, no 
work has been done with circular bit rotation. The objectives of this paper include;

1.	 Address the problem of repetitions in emergent/resulting bit strings when the inci-
dent/original bit string is rotated circularly.

2.	 Add or contribute to existing knowledge using a novel concept.
3.	 Provide a quantum perspective to bit rotation using the quantum swap gate.
4.	 Provide a performance analysis based on execution times of classical implementation 

and quantum implementation codes on the binary bit strings.

Method
In the development of the algorithm, the traditional system development life cycle 
(SDLC) was adopted. Concepts and models which are proven were used in the design 
process, hence can guarantee an effective and efficient algorithm. In this paper, second-
ary data were used basically from journals, literature and websites. Primarily, the con-
cepts of circular bit rotation, bit dispersal, bit recombination/extraction and bit prism 
were used in the design phase of the classical algorithm. There was a strict adherence 
to the code of ethics for writing manuscripts by ensuring that no plagiarism was made. 
This work poses no ethical issues or challenges and follows high compliance to ethical 
standards.

The concept of bit prism is derived from the principle of passing light through a glass 
prism where the incident light ray comes out as emergent light rays, more like a color 
spectrum [30, 31] A bit prism is an abstract object or concept which entails the princi-
ples of circular bit rotation, dispersal and recombination. An operation where bits that 
fall off at the left end is put back at the right end and bits that fall off at the right end is 
put back at the left end.

The concept of bit swapping was used to rotate quantum bit strings made possible by a 
quantum swap gate using jsqubits runner (an online quantum computer simulator).

Fig. 4  Example universal set of quantum gates consisting of three single qubit rotation gates and one 
two-qubit CNOT gate, with circuit symbols, depictions, and representations [25]
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Classical perspective (CRotate)

In a bit prism, the incident word or classical string is not parallel to emergent word. 
When a word is passed through the bit prism it gets deviated a number of times 
(n − 1), where n is the number of bits in a word or classical string. An incident word 
can be split into multiple emergent words by means of circular bit rotation and dis-
persal. These multiple words are referred to as the spectrum of incident word. The 
emergent multiple words each have different deviation or rotational values, starting 
with lower deviations, then to higher ones. A spectrum of incident word consisting 
of emergent word(s) can be recombined to form back the incident word. This can 
be done by picking of the emergent words and rotating it back by the same devia-
tion value used to rotate it. Another approach is to pick the last bit of each emergent 
word and the first bit of the last emergent word in a systematic fashion, starting from 
the word with the least deviation and progressing downwards to the word with the 
most deviation and concatenating them. At this point, a word or classical string is 
produced and this corresponds to the incident word. For example using the classical 
incident words 101, 1011, 01110 and 1101010, we have what is shown in Figs. 5, 6, 7, 
8, 9, 10, 11 and 12.

Fig. 5  Passing the classical bit string 101 through the bit prism

Fig. 6  Passing the classical bit string 1011 through the bit prism 01110
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Left (or anticlockwise) rotation

In Fig. 5 above as an example, the incident bit string 101, splits into 2 emergent bit 
strings 011 and 110 by avenue of rotation. These 2 emergent bit strings recombine 
again to form back 101 using the principle stated in the “classical perspective sec-
tion.” The recombination is achieved by concatenating the last bit of each emergent 
bit strings plus the first bit of the last emergent bit string. This approach is for left or 
anticlockwise rotation.

Fig. 7  Passing the classical bit string 01110 through the bit prism

Fig. 8  Result after passing the classical bit string 1101010 through the bit prism
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Right (or clockwise) rotation

In Fig. 9 above as an example, the incident bit string 101, splits into 2 emergent bit strings 
110 and 011 by avenue of rotation. These 2 emergent bit strings recombines again to form 
back 101 using the principle stated in the “classical perspective section.” The recombination 
is achieved by concatenating the first bit of the first emergent bit string plus the last bit of 
each emergent bit string. This approach is for right or clockwise rotation.

Quantum–classical perspective

In the quantum–classical perspective, qbits (quantum bits) must be represented in multiple cbits (classical 
bits) by means of applying tensor product to produce the product state. The product state can be factored 
back into the individual state representation. The product state of n bits is a vector of size 2n. For example, 
the quantum bit strings |101>, |1011>, and |01110> in Dirac notation give corresponding classical bits (in 
the form of a vector or product state) after the tensor product has been applied to all the quantum bits in 
vector form.

Fig. 9  Passing the classical bit string 101 through the bit prism

Fig. 10  Passing the classical bit string 1011 through the bit prism
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The quantum string |101> results in a classical string 00000010.
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Fig. 11  Passing the classical bit string 01110 through the bit prism

Fig. 12  Passing the classical bit string 1101010 through the bit prism
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The quantum string |1011> results in a classical string 0000000000000010

The quantum string |01110> results in a classical string 0000000000000100000000000
0000000.
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The classical bit strings obtained from the quantum bit strings become the incident 
binary strings which is passed through the conceptual bit prism, just like what was done 
for the examples in the classical perspective. This produces a number of emergent clas-
sical strings (n − 1) by means of circular rotation, where n is the number of bits in the 
vector/classical bit string (product state). Bit(s) are subsequently extracted from the 
emergent classical strings to form back the incident classical bit string or vector. This 
resulting incident string or vector can be factored back into the individual state repre-
sentation, and then subsequently back to the quantum bit representation.

Quantum perspective (QRotate)

From a quantum perspective, bit rotation is made possible by avenue of a swap gate, 
control bit, and data. The algorithm that is proposed can perform shift left, shift right, 
rotation left and rotation right on an n-qubit string. This algorithm is demonstrated at 
the Results section of this paper, however, the method or approach is explained below. 
The following five principles are employed in the quantum bit rotation process; control 
bit selection, bit swapping, and bit truncation. Below is the steps for the quantum bit 
string rotation.

1.	 A quantum bit string is chosen.
2.	 A control bit is selected and could be either |0> or |1>.
3.	 The control bit is placed or concatenated to the beginning or the end of the quantum 

bit string resulting in a new quantum bit string.
4.	 The swapping process begins from the position where the control bit is placed and 

successive bits in a progressive order is swapped till (n − 1) position is reached.
5.	 At this stage n − 1, quantum bit strings is obtained.
6.	 The last quantum bit string is the string obtained after the rotational swap is done. 

However, any repeated quantum string during the rotational swap is discarded or 
excluded otherwise it is included in the set of quantum bit stings.

7.	 To decode and get back the original quantum bit string, the last but one and the last 
bit are swapped if the control bit was placed at the beginning of the quantum bit 
string. If the control bit was placed at the end of the quantum bit string, then the first 
and second bits are swapped. Swapping of bits is done using the swap gate.

8.	 If the control bit was placed at the beginning of the quantum bit string, the last bit 
is truncated otherwise the first bit is truncated. Alternatively, the rotated bit string 
obtained in step 6 can be rotated by means of swapping in a reverse order till the 
position where the control bit was concatenated to get back the original quantum bit 
string.

9.	 At this stage, the original quantum bit string is obtained.

Alternative approach

From a quantum perspective, bit rotation is made possible by avenue of use of a swap 
gate only. Here, bits are swapped from position 0 of the quantum string to position n. To 
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get back the original quantum string, bits are swapped in the reverse order from position 
n to position 0. The steps include;

1.	 A quantum bit is chosen
2.	 Bits swapping is done using swap gate from position 0 of the quantum string to posi-

tion n.
3.	 At this point, a new quantum string is obtained.
4.	 To get back the original quantum string, bit swapping is done using swap gate from 

position n of the quantum string to position 0 (this is the reverse of step 2).

Let’s consider the quantum bit strings |101>, |1011>, |01110> and |1101010> using the 
alternative approach. The following results is obtained.

|101>
Original quantum string: |101>
Bit swapping using swap gate from position 0 to n.
Swap position 0 and 1: |110>
Swap position 1 and 2: |110>
New quantum string: |110>
To get back the original quantum string.
Bit swapping using swap gate from position n to 0.
Swap position n and n − 1: |110>
Swap position n − 1 and n − 2: |101>
Original quantum string: |110>
|1011>
Original quantum string: |1011>
Bit swapping using swap gate from position 0 to n.
Swap position 0 and 1: |1011>
Swap position 1 and 2: |1101>
Swap position 2 and 3: |1101>
New quantum string: |1101>
To get back the original quantum string.
Bit swapping using swap gate from position n to 0.
Swap position n and n − 1: |1101>
Swap position n − 1 and n − 2: |1011>
Swap position n − 2 and n − 3: |1011>
Original quantum string: |1011>
|01110>
Original quantum string: |01110>
Bit swapping using swap gate from position 0 to n.
Swap position 0 and 1: |01101>
Swap position 1 and 2: |01011>
Swap position 2 and 3: |00111>
Swap position 3 and 4: |00111>
New quantum string: |00111>
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To get back the original quantum string.
Bit swapping using swap gate from position n to 0.
Swap position n and n − 1: |00111>
Swap position n − 1 and n − 2: |01011>
Swap position n − 2 and n − 3: |01101>
Swap position n − 3 and n − 4: |01110>
Original quantum string: |01110>
|1101010>
Original quantum string: |1101010>
Bit swapping using swap gate from position 0 to n.
Swap position 0 and 1: |1101001>
Swap position 1 and 2: |1101001>
Swap position 2 and 3: |1100101>
Swap position 3 and 4: |1100101>
Swap position 4 and 5: |1010101>
Swap position 5 and 6: |0110101>
New quantum string: |0110101>
To get back the original quantum string.
Bit swapping using swap gate from position n to 0.
Swap position n and n − 1: |1010101>
Swap position n − 1 and n − 2: |1100101>
Swap position n − 2 and n − 3: |1100101>
Swap position n − 3 and n − 4: |1101001>
Swap position n − 4 and n − 5: |1101001>
Swap position n − 5 and n − 6: |1101010>
Original quantum string: |1101010>

The results above is shown from Figs. 21, 22, 23 and 24 in the “Quantum Implementa-
tion using jsqubits” section.
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Results
Classical implementation using C++
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Using the Dev-C++ compiler, the following results in Figs. 13, 14, 15, 16, 17, 18, 19 and 
20 are obtained below.
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Left (or anticlockwise) rotation

Fig. 13  Left or anticlockwise rotation of 101

Fig. 14  Left or anticlockwise rotation of 1011

Fig. 15  Left or anticlockwise rotation of 01110
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Right (or clockwise) rotation

Quantum implementation using jsqubits

Using the jsqubits runner, an online quantum computer simulator, the following results 
are obtained below in Figs. 21, 22, 23 and 24. The time complexity depends on the size of 
the quantum bit string-1. The quantum swap gate is employed here.

Fig. 16  Left or anticlockwise rotation of 1101010

Fig. 17  Right or clockwise rotation of 101

Fig. 18  Right or clockwise rotation of 1011
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Fig. 19  Right or clockwise rotation of 01110

Fig. 20  Right or clockwise rotation of 1101010

Fig. 21  Rotating quantum bit string |101 > by using a swap gate
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Various models for circular bit rotation using bits and qubits have been presented 
using bit strings or words. These models have been implemented in the C++ program-
ming language, that is for the classical, and jsqubits for the quantum. They are both func-
tional and effective. The execution time (seconds) of 101, 1011, 01110, 1101010 for both 
left and right circular rotation using the classical and quantum algorithms increases as 
the bit string becomes longer. However, from Figs. 25, 26 and 27 below, it is realized that 
the execution time for the quantum code is far smaller than the classical code for all the 
bit strings. This seems to suggest that the quantum algorithm is faster in terms of execu-
tion time as compared to the classical algorithm. 

Below is the execution times shown in Figs. 25, 26 and 27.

Performance analysis of bit rotation algorithms and techniques

The running times, operation and support of some bit rotation algorithms or techniques 
including CRotate and QRotate (classical and quantum approach proposed in this 
paper) are summarized in Table 1 below.

Discussion
The classical implementation or algorithm in the results section, accepts a binary input 
or string, rotates the bit string circularly using bit rotation and the conceptual bit prism 
and emergent strings come out as the output. These emergent strings are recombined 
(by means of extracting bit(s) from each of the strings) to form back the original or inci-
dent string. The quantum snippets of code accepts a quantum bit string, swaps the bits 

Fig. 22  Rotating quantum bit string |1011 > by using a swap gate
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in an orderly fashion from position 0 to n. The original quantum bit string is gotten back 
by swapping the bits in an orderly fashion from position n to 0. The algorithms are effec-
tive and able to perform the tasks above. The time complexity for the classical and quan-
tum implementation is O(n). Some deductions were made and include:

Deduction

(a)	 There is an increase in the execution time as the size of the bit string increases.
(b)	 For the classical perspective, number of emergent bit strings equals size of incident 

bit string – 1, where emergent bit strings are strings obtained after the rotation and 
the incident bit string is the original bit string before the rotational process.

(c)	 For the quantum perspective, the number of bit swapping equals the size of the 
quantum bit string – 1.

Fig. 23  Rotating quantum bit string |01110 > by using a swap gate
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Fig. 24  Rotating quantum bit string |1101010 > by using a swap gate



Page 22 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol             (2021) 8:4 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

"101" "1011" "01110" "1101010"

Execu�on Time (seconds)

Fig. 25  Execution times of classical bit strings—left or clockwise rotation
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Fig. 26  Execution times of classical bit strings—right or anticlockwise rotation
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Fig. 27  Execution times of quantum bit strings—rotation by bit swapping
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Conclusion
Based on the galloping rate of the development and implementation of classical and 
quantum models, this paper also seeks to propose a model for circular bit rotation 
using a conceptual bit prism drawn from the inspiration of white light going through 
a glass prism. Existing techniques in circular bit rotation have some challenge with 
respect to the fact that it does not have an end and keeps going on in cycles or in a 
circle and also produces some form of repeating bit strings at some point in the rota-
tional process. This necessitated the need to use the bit prism concept in this work 
to help address this challenge and from the method and results above, it has been 
addressed incorporating a high level of strictness in the rotational process especially 
for the classical aspect. The quantum bit rotation in this paper, however, uses a bit 
swapping technique by avenue of a quantum swap gate made available in jsqubits.

Future works will be to use this concept for cryptographic purposes.

Table 1  Running time of bit rotation algorithms, techniques and circuits

Algorithm/technique Running time Operation and support

1 Circular shift O(n) upwards Permutation σ of the n entries in a tuple
Involves arithmetic operations

2 Arithmetic shift O(1)–O(n) –

3 Logical shift O(1)–O(n) Does not preserve a number’s sign bit
Every bit in the operand is simply moved a 

given number of bit positions
Vacant bit positions are filled, usually with 

zeros or one’s

4 Faster bit rotation (Improved version of 
the circular shift)

O(n) Permutation σ of the n entries in a tuple
No arithmetic operations, only bit manipu-

lations

5 Bit shift and bit rotation algorithm with 
Scilab implementation

O(NB-n) –

6 A highly efficient reconfigurable rotation 
unit based on an inverse butterfly 
network

Not applicable 
because it is a 
circuit

64-bit Single Instruction Single Data (SISD)
MultiMedia eXtensions/Streaming SIMD 

Extensions (MMX/SSE) instructions

7 sb-rotate-byte

8 Fast MSB and LSB Rotate method – 8 bit data

9 CORDIC algorithm – Operand word-length of 54 bits

10 CORDIC II – –

11 VHDL 16-bit shifter Circuit 16 bit data

12 Power mux based on dynamic barrel 
shifter using footed diode domino logic

Circuit 8 bit

13 8 bit barrel shifter using 8 × 1 multiplexer Circuit 8 bit

14 Quantum shift register Circuit Qubit data

15 CRotate and QRotate O(n) CRotate: 232 bytes or 264 bytes determined 
by the amount of memory that the pro-
gram can access. The size of the array can 
be increased from 1000 as is in the case 
of the CRotate to up to 232 or 264

QRotate: n qubit
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Abbreviations
CRotate: circular rotate; QRotate: quantum rotate; XOR: exclusive OR; LSL: logical shift left; LSR: logical shift right; LSB: 
least significant bit; MSB: most significant bit; ROR: rotate right; ROL: rotate left; CPU: central processing unit; SLA: shift 
left arithmetic; SRA: shift right arithmetic; SRL: shift left logical; SRL: shift right logical; RL: rotate left; RR: rotate right; GDI: 
gate diffusion input; qubit: quantum Bit; CNOT: controlled not; SDLC: system development life cycle; jsqubits: JavaScript 
quantum computer simulator; circ_rotate: circular rotate.
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