
Rotation of bits: a classical and quantum
perspective
Peter Nimbe*  , Benjamin Asubam Weyori and Adebayo Felix Adekoya

Introduction
Circular bit rotation is an operation where bits are moved in a circular fashion such that
bits change their positional values and do not fall off, but rather are placed back to the
other end [1, 2]. A left rotation operation is where bits that fall off at the left end are
placed back at the right end [1, 2]. In a right rotation operation, bits that fall off at the
right end are placed back at the left end [1, 2]. A shift operation that is circular seeks to
rearrange the entries present in a data structure by moving the bit to the next position
whiles the last bit is moved to the position of the first bit [1, 2]. Elimination of bits is not
done by the rotate instructions. For a left rotate (rol), as shown in Fig. 1, bits shifted off
the left end of a data word fill the vacated positions on the right. Likewise, for a right
rotate (ror), bits “falling off” the right end appear in the vacated positions at left [1, 2].

The bit sequence 00010111 rotated circularly to the left by one bit position produces
the bit sequence 00101110 in Fig. 1 above. No bits are lost after the rotational operation
or process [1, 2].

With reference to Fig. 2, if the bit sequence 00010111 were subjected to a circular shift
of one bit position to the right would yield: 10001011 [1, 2].

Abstract 

Bit rotation is an operation similar to shift except that the bits that fall off at one end
are put back to the other end. In left rotation, the bits that fall off at left end are put
back at right end. In right rotation, the bits that fall off at the right end are put back at
the left end. Applications of bit rotation include; registers, cryptography, computing
with a single bit string circularly shifted to the right or left based on some position but
no work has been done with respect to shifting the bits one position at a time generat-
ing emergent bit strings equal to the number of bits-1 from the incident bit string, and
then recombining or extracting bit(s) from each of the bit strings or words to form back
the incident bit string. In this article, the authors present a new approach of rotating
classical bit strings known as CRotate. A quantum approach to bit rotation known as
QRotate is presented as well. The quantum perspective uses the concept of bit swap-
ping by avenue of the quantum swap gate in jsqubits. Models and algorithms are duly
presented.

Keywords:  Classical logic gates, Quantum logic gates, Bitwise operators, Swap gate,
Quantum bit rotation, Classical bit rotation

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Nimbe et al.
Journal of Electrical Systems and Inf Technol (2021) 8:4
https://doi.org/10.1186/s43067-021-00029-8

Journal of Electrical Systems
and Information Technology

*Correspondence:
peter.nimbe@uenr.edu.gh
University of Energy
and Natural Resources, P.O.
Box 214, Sunyani, Ghana

http://orcid.org/0000-0002-6823-5274
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43067-021-00029-8&domain=pdf

Page 2 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

The concept of circular bit rotation is made clearer by the example below. Assum-
ing we have an 8 bit sequence, say 11100101, moving the bits by 3 places to the
left produces 00101111 bit sequence. This implies that the first 3 bits are placed
back at the end of the bit sequence. Moving the bits in the original bit sequence
by 3 places to the right produces 10111100 bit sequence. This implies that the
last 3 bits are placed back at the beginning of the bit sequence. If we have a 16 bit
sequence, say 0000000001110010, moving the bits by 3 places to the left produces
0000001110010000 bit sequence. Moving the bits in the original bit sequence by 3
places to the right produces 0100000000001110 bit sequence [1, 2].

A number of cryptographic researchers used the logical XOR gate (digital logical
gate which performs a logical operation on one or more logic inputs and produces a
single logic output) or operation in their encryption protocols [3, 4].

Rotators and shifter move bits and multiply or divide by powers of 2. A shifter shifts
a number in base 2 left or right by some specified number of positions. Some com-
monly used shifter kinds include; Logical shifter, Arithmetic shifter and Rotator [5, 6].
Logical shifter shifts the number to the left (LSL) or right (LSR) and fills empty spots
or positions with zeros. Ex: 11001 LSL 2 = 00100, 11001 LSR 2 = 00110. The arithme-
tic shifter operates just like the logical shifter but with some slight operation differ-
ence [5, 6]. On the right shift, it fills the most significant bit (msb) with a copy of the
old significant bit, which is vital or key for dividing and multiplying signed numbers.
Arithmetic shift left works the same as the logical shift left. Ex: 11001 ROR 2 = 01110;
11001 ROL 2 = 00111. Rotators rotate the bit string in a circle such that empty spots
are filled with bits shifted off the other end. Ex: 11001 ROR 2 = 01110; 11001 ROL
2 = 00111 [5, 6].

A shifter that perform left shifts, logical and arithmetic right shifts, or no shift is
shown in Fig. 3 below from a classical perspective [7].

In 2008, Renesas Electronics Corporation demonstrated a method for decreas-
ing the time taken by a H8 CPU in performing an 8 bit rotate from LSB first to

Fig. 1  Rotate left diagram [1, 2]

Fig. 2  Rotate right diagram [1, 2]

Page 3 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

MSB first. This approach has two methods for completing an 8 bit rotate. The first
method employs a look up table; the second rotates physically the data from MSB
first to LSB first [8].

The OR, AND, NOT and XOR are simple bit-parallel operations supported in
word-oriented processors. They are logical operations that are typically imple-
mented with integer arithmetic operations in computer system, specifically the
arithmetic and logic unit, which is the most basic functional unit in a processor. In
bit rotations, shifter and mix operations can be used [9].

The standard set of bitwise operations, including OR, AND, XOR, LEFT/RIGHT
SHIFT, NOT, is incorporated or available in the C and C++ programming lan-
guages. However, circular shift is excluded in the language [10]. When a computer
integer is rotated, any bit that falls off one end of the register is moved to the other
end as if they are connected end-to-end in a conceptual manner. Circular rotation
has some applications in cryptography, for the purposes of encryption and decryp-
tion [10].

Bennett disclosed the secret of saving energy by maintaining a unique mapping
between input and output vectors called logical reversibility of computation [11]. A
reversible circuit is composed of reversible gates only whereas a reversible gate has
the property of maintaining one-to-one mapping between input and output vectors.
Among the conventional logic gates, NOT operation is the only one which itself
is reversible. However, the other conventional logic operations have their reversi-
ble counterpart, which is known as n × n dimensional reversible gate. In designing
reversible circuits, there exist 2 × 2 and several 3 × 3 gates [12–14]. A typical exam-
ple of the 2 × 2 gate is the Feynman gate [12]. Fredkin gate [14] and Feynman double
gate [13] are examples of 3 × 3 gates.

Muwafi et al. also proposed a circuit for rotating, left shifting, or right shifting bit
where a circuit for rotating bits of an input word during a single cycle, by duplicat-
ing the input word to form an extended word, shifting bits of the extended word, and
selecting a subset of the shifted bits of the extended word [15].

Fig. 3  A shifter that performs left shifts, logical and arithmetic right shifts, or no shift [7]

Page 4 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

Application

Bit rotation is employed in barrel shifters (a logic circuits extensively used in embed-
ded digital signal processors as well as in general purpose processors to manipulate
the data as rotating and shifting information is required in few fields including bit-
indexing, arithmetic tasks and variable-length coding) [16, 17]. Bharathesh et al. pro-
posed a low power mux based on dynamic barrel shifter using footed diode domino
logic [16, 17]. There are bidirectional barrel shifters that can perform six unique tasks:
shift right arithmetic (SRA), shift right logical (SRL), rotate left (RL), shift left logical
(SLL), shift left arithmetic (SLA), and rotate right (RR) [16, 17].

Shah et al. designed a fully custom 8 bit barrel shifter using 8 × 1 multiplexer with
the help of GDI technique. The barrel shifter is simply a bit-rotating shift register [18].
A robust architecture of logarithmic barrel shifter that performs bidirectional arith-
metic and logical shifting, including rotate operation [19]. Aarthi et al. conducted an
image encryption using binary bit plane and rotation method for an image security.
Yeng et al. also used the concept of bit rotation to design an encryption algorithm [2,
20]. A new universal hash function, circulant hash based on bit rotation was proposed
and is a variant of the classical random matrix-based hash of Carter and Wegman,
called H3, and Toeplitz hash by Krawczyk [21]. An encryption approach for Images
using Bits Rotation Reversal and Extended Hill Cipher Technique was also devised
[22] as well as an Adaptive Bit Rotation and Inversion Scoring, a novel approach to
LSB Image Steganography [23].

Quantum perspective

In quantum computing, unit of data is called qubit and the value of qubit is the super-
position of |0> and |1> . Every quantum operation is reversible if it is represented by
a unitary matrix which is used to multiply the state of qubit(s) that produces out-
put [24]. Quantum computers process data by applying a universal set of quantum
gates that can emulate any rotation of the quantum state vector [25]. The comparative
quantum realization of any reversible circuit is used to verify the operability of that
circuit [19].

A quantum circuit called quantum shift register in which shift and rotation opera-
tions on qubits are performed by swap gates and controlled swap gates. For quantum
computers to perform arithmetic operations that are elementary (bitwise comparison
of qubits and multiplication), these operations are of essence [26].

Rotation operators are defined as Rx, Ry and Rz and are shown in Fig. 4 below.
When the Pauli matrices are exponentiated, rotation operators are generated

according to exp (iAx) = cos(x) I + I sin(x) A, where A is one of the three Pauli Matri-
ces [27, 28].

Problem, objective and contribution

The current or existing circular bit rotation techniques never ends because it is in a
cycle and is continuous. Unlike a logical shift, the vacant bit positions are not filled
in with zeros but are filled in with the bits that are shifted out of the sequence [29].
Repetition of bit strings tend to show up at some point when the bit string is rotated

Page 5 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

circularly using shifts progressively and this poses as a weakness and danger, even
to computing and cryptography [2]. For the quantum–classical perspective also, no
work has been done with circular bit rotation. The objectives of this paper include;

1.	 Address the problem of repetitions in emergent/resulting bit strings when the inci-
dent/original bit string is rotated circularly.

2.	 Add or contribute to existing knowledge using a novel concept.
3.	 Provide a quantum perspective to bit rotation using the quantum swap gate.
4.	 Provide a performance analysis based on execution times of classical implementation

and quantum implementation codes on the binary bit strings.

Method
In the development of the algorithm, the traditional system development life cycle
(SDLC) was adopted. Concepts and models which are proven were used in the design
process, hence can guarantee an effective and efficient algorithm. In this paper, second-
ary data were used basically from journals, literature and websites. Primarily, the con-
cepts of circular bit rotation, bit dispersal, bit recombination/extraction and bit prism
were used in the design phase of the classical algorithm. There was a strict adherence
to the code of ethics for writing manuscripts by ensuring that no plagiarism was made.
This work poses no ethical issues or challenges and follows high compliance to ethical
standards.

The concept of bit prism is derived from the principle of passing light through a glass
prism where the incident light ray comes out as emergent light rays, more like a color
spectrum [30, 31] A bit prism is an abstract object or concept which entails the princi-
ples of circular bit rotation, dispersal and recombination. An operation where bits that
fall off at the left end is put back at the right end and bits that fall off at the right end is
put back at the left end.

The concept of bit swapping was used to rotate quantum bit strings made possible by a
quantum swap gate using jsqubits runner (an online quantum computer simulator).

Fig. 4  Example universal set of quantum gates consisting of three single qubit rotation gates and one
two-qubit CNOT gate, with circuit symbols, depictions, and representations [25]

Page 6 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

Classical perspective (CRotate)

In a bit prism, the incident word or classical string is not parallel to emergent word.
When a word is passed through the bit prism it gets deviated a number of times
(n − 1), where n is the number of bits in a word or classical string. An incident word
can be split into multiple emergent words by means of circular bit rotation and dis-
persal. These multiple words are referred to as the spectrum of incident word. The
emergent multiple words each have different deviation or rotational values, starting
with lower deviations, then to higher ones. A spectrum of incident word consisting
of emergent word(s) can be recombined to form back the incident word. This can
be done by picking of the emergent words and rotating it back by the same devia-
tion value used to rotate it. Another approach is to pick the last bit of each emergent
word and the first bit of the last emergent word in a systematic fashion, starting from
the word with the least deviation and progressing downwards to the word with the
most deviation and concatenating them. At this point, a word or classical string is
produced and this corresponds to the incident word. For example using the classical
incident words 101, 1011, 01110 and 1101010, we have what is shown in Figs. 5, 6, 7,
8, 9, 10, 11 and 12.

Fig. 5  Passing the classical bit string 101 through the bit prism

Fig. 6  Passing the classical bit string 1011 through the bit prism 01110

Page 7 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

Left (or anticlockwise) rotation

In Fig. 5 above as an example, the incident bit string 101, splits into 2 emergent bit
strings 011 and 110 by avenue of rotation. These 2 emergent bit strings recombine
again to form back 101 using the principle stated in the “classical perspective sec-
tion.” The recombination is achieved by concatenating the last bit of each emergent
bit strings plus the first bit of the last emergent bit string. This approach is for left or
anticlockwise rotation.

Fig. 7  Passing the classical bit string 01110 through the bit prism

Fig. 8  Result after passing the classical bit string 1101010 through the bit prism

Page 8 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

Right (or clockwise) rotation

In Fig. 9 above as an example, the incident bit string 101, splits into 2 emergent bit strings
110 and 011 by avenue of rotation. These 2 emergent bit strings recombines again to form
back 101 using the principle stated in the “classical perspective section.” The recombination
is achieved by concatenating the first bit of the first emergent bit string plus the last bit of
each emergent bit string. This approach is for right or clockwise rotation.

Quantum–classical perspective

In the quantum–classical perspective, qbits (quantum bits) must be represented in multiple cbits (classical
bits) by means of applying tensor product to produce the product state. The product state can be factored
back into the individual state representation. The product state of n bits is a vector of size 2n. For example,
the quantum bit strings |101>, |1011>, and |01110> in Dirac notation give corresponding classical bits (in
the form of a vector or product state) after the tensor product has been applied to all the quantum bits in
vector form.

Fig. 9  Passing the classical bit string 101 through the bit prism

Fig. 10  Passing the classical bit string 1011 through the bit prism

Page 9 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

The quantum string |101> results in a classical string 00000010.

|101� =

�

0

1

�

⊗

�

1

0

�

⊗

�

0

1

�

=







0

0

1

0






⊗

�

0

1

�

=























0

0

0

0

0

0

1

0























Fig. 11  Passing the classical bit string 01110 through the bit prism

Fig. 12  Passing the classical bit string 1101010 through the bit prism

Page 10 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

The quantum string |1011> results in a classical string 0000000000000010

The quantum string |01110> results in a classical string 0000000000000100000000000
0000000.

|1011� =

�

0

1

�

⊗

�

1

0

�

⊗

�

0

1

�

⊗

�

0

1

�

=







0

0

1

0






⊗

�

0

1

�

=























0

0

0

0

0

0

1

0























⊗

�

0

1

�

=



















































0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0



















































|01110� =

�

1

0

�

⊗

�

0

1

�

⊗

�

0

1

�

⊗

�

0

1

�

⊗

�

1

0

�

=







0

1

0

0






⊗

�

0

1

�

=























0

0

0

0

0

1

0

0























⊗

�

0

1

�

=



















































0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0



















































⊗

�

1

0

�

=















































































































0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0















































































































Page 11 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

The classical bit strings obtained from the quantum bit strings become the incident
binary strings which is passed through the conceptual bit prism, just like what was done
for the examples in the classical perspective. This produces a number of emergent clas-
sical strings (n − 1) by means of circular rotation, where n is the number of bits in the
vector/classical bit string (product state). Bit(s) are subsequently extracted from the
emergent classical strings to form back the incident classical bit string or vector. This
resulting incident string or vector can be factored back into the individual state repre-
sentation, and then subsequently back to the quantum bit representation.

Quantum perspective (QRotate)

From a quantum perspective, bit rotation is made possible by avenue of a swap gate,
control bit, and data. The algorithm that is proposed can perform shift left, shift right,
rotation left and rotation right on an n-qubit string. This algorithm is demonstrated at
the Results section of this paper, however, the method or approach is explained below.
The following five principles are employed in the quantum bit rotation process; control
bit selection, bit swapping, and bit truncation. Below is the steps for the quantum bit
string rotation.

1.	 A quantum bit string is chosen.
2.	 A control bit is selected and could be either |0> or |1>.
3.	 The control bit is placed or concatenated to the beginning or the end of the quantum

bit string resulting in a new quantum bit string.
4.	 The swapping process begins from the position where the control bit is placed and

successive bits in a progressive order is swapped till (n − 1) position is reached.
5.	 At this stage n − 1, quantum bit strings is obtained.
6.	 The last quantum bit string is the string obtained after the rotational swap is done.

However, any repeated quantum string during the rotational swap is discarded or
excluded otherwise it is included in the set of quantum bit stings.

7.	 To decode and get back the original quantum bit string, the last but one and the last
bit are swapped if the control bit was placed at the beginning of the quantum bit
string. If the control bit was placed at the end of the quantum bit string, then the first
and second bits are swapped. Swapping of bits is done using the swap gate.

8.	 If the control bit was placed at the beginning of the quantum bit string, the last bit
is truncated otherwise the first bit is truncated. Alternatively, the rotated bit string
obtained in step 6 can be rotated by means of swapping in a reverse order till the
position where the control bit was concatenated to get back the original quantum bit
string.

9.	 At this stage, the original quantum bit string is obtained.

Alternative approach

From a quantum perspective, bit rotation is made possible by avenue of use of a swap
gate only. Here, bits are swapped from position 0 of the quantum string to position n. To

Page 12 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

get back the original quantum string, bits are swapped in the reverse order from position
n to position 0. The steps include;

1.	 A quantum bit is chosen
2.	 Bits swapping is done using swap gate from position 0 of the quantum string to posi-

tion n.
3.	 At this point, a new quantum string is obtained.
4.	 To get back the original quantum string, bit swapping is done using swap gate from

position n of the quantum string to position 0 (this is the reverse of step 2).

Let’s consider the quantum bit strings |101>, |1011>, |01110> and |1101010> using the
alternative approach. The following results is obtained.

|101>
Original quantum string: |101>
Bit swapping using swap gate from position 0 to n.
Swap position 0 and 1: |110>
Swap position 1 and 2: |110>
New quantum string: |110>
To get back the original quantum string.
Bit swapping using swap gate from position n to 0.
Swap position n and n − 1: |110>
Swap position n − 1 and n − 2: |101>
Original quantum string: |110>
|1011>
Original quantum string: |1011>
Bit swapping using swap gate from position 0 to n.
Swap position 0 and 1: |1011>
Swap position 1 and 2: |1101>
Swap position 2 and 3: |1101>
New quantum string: |1101>
To get back the original quantum string.
Bit swapping using swap gate from position n to 0.
Swap position n and n − 1: |1101>
Swap position n − 1 and n − 2: |1011>
Swap position n − 2 and n − 3: |1011>
Original quantum string: |1011>
|01110>
Original quantum string: |01110>
Bit swapping using swap gate from position 0 to n.
Swap position 0 and 1: |01101>
Swap position 1 and 2: |01011>
Swap position 2 and 3: |00111>
Swap position 3 and 4: |00111>
New quantum string: |00111>

Page 13 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

To get back the original quantum string.
Bit swapping using swap gate from position n to 0.
Swap position n and n − 1: |00111>
Swap position n − 1 and n − 2: |01011>
Swap position n − 2 and n − 3: |01101>
Swap position n − 3 and n − 4: |01110>
Original quantum string: |01110>
|1101010>
Original quantum string: |1101010>
Bit swapping using swap gate from position 0 to n.
Swap position 0 and 1: |1101001>
Swap position 1 and 2: |1101001>
Swap position 2 and 3: |1100101>
Swap position 3 and 4: |1100101>
Swap position 4 and 5: |1010101>
Swap position 5 and 6: |0110101>
New quantum string: |0110101>
To get back the original quantum string.
Bit swapping using swap gate from position n to 0.
Swap position n and n − 1: |1010101>
Swap position n − 1 and n − 2: |1100101>
Swap position n − 2 and n − 3: |1100101>
Swap position n − 3 and n − 4: |1101001>
Swap position n − 4 and n − 5: |1101001>
Swap position n − 5 and n − 6: |1101010>
Original quantum string: |1101010>

The results above is shown from Figs. 21, 22, 23 and 24 in the “Quantum Implementa-
tion using jsqubits” section.

Page 14 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

Results
Classical implementation using C++

Page 15 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

Using the Dev-C++ compiler, the following results in Figs. 13, 14, 15, 16, 17, 18, 19 and
20 are obtained below.

Page 16 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

Left (or anticlockwise) rotation

Fig. 13  Left or anticlockwise rotation of 101

Fig. 14  Left or anticlockwise rotation of 1011

Fig. 15  Left or anticlockwise rotation of 01110

Page 17 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

Right (or clockwise) rotation

Quantum implementation using jsqubits

Using the jsqubits runner, an online quantum computer simulator, the following results
are obtained below in Figs. 21, 22, 23 and 24. The time complexity depends on the size of
the quantum bit string-1. The quantum swap gate is employed here.

Fig. 16  Left or anticlockwise rotation of 1101010

Fig. 17  Right or clockwise rotation of 101

Fig. 18  Right or clockwise rotation of 1011

Page 18 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

Fig. 19  Right or clockwise rotation of 01110

Fig. 20  Right or clockwise rotation of 1101010

Fig. 21  Rotating quantum bit string |101 > by using a swap gate

Page 19 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

Various models for circular bit rotation using bits and qubits have been presented
using bit strings or words. These models have been implemented in the C++ program-
ming language, that is for the classical, and jsqubits for the quantum. They are both func-
tional and effective. The execution time (seconds) of 101, 1011, 01110, 1101010 for both
left and right circular rotation using the classical and quantum algorithms increases as
the bit string becomes longer. However, from Figs. 25, 26 and 27 below, it is realized that
the execution time for the quantum code is far smaller than the classical code for all the
bit strings. This seems to suggest that the quantum algorithm is faster in terms of execu-
tion time as compared to the classical algorithm.

Below is the execution times shown in Figs. 25, 26 and 27.

Performance analysis of bit rotation algorithms and techniques

The running times, operation and support of some bit rotation algorithms or techniques
including CRotate and QRotate (classical and quantum approach proposed in this
paper) are summarized in Table 1 below.

Discussion
The classical implementation or algorithm in the results section, accepts a binary input
or string, rotates the bit string circularly using bit rotation and the conceptual bit prism
and emergent strings come out as the output. These emergent strings are recombined
(by means of extracting bit(s) from each of the strings) to form back the original or inci-
dent string. The quantum snippets of code accepts a quantum bit string, swaps the bits

Fig. 22  Rotating quantum bit string |1011 > by using a swap gate

Page 20 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

in an orderly fashion from position 0 to n. The original quantum bit string is gotten back
by swapping the bits in an orderly fashion from position n to 0. The algorithms are effec-
tive and able to perform the tasks above. The time complexity for the classical and quan-
tum implementation is O(n). Some deductions were made and include:

Deduction

(a)	 There is an increase in the execution time as the size of the bit string increases.
(b)	 For the classical perspective, number of emergent bit strings equals size of incident

bit string – 1, where emergent bit strings are strings obtained after the rotation and
the incident bit string is the original bit string before the rotational process.

(c)	 For the quantum perspective, the number of bit swapping equals the size of the
quantum bit string – 1.

Fig. 23  Rotating quantum bit string |01110 > by using a swap gate

Page 21 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

Fig. 24  Rotating quantum bit string |1101010 > by using a swap gate

Page 22 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

"101" "1011" "01110" "1101010"

Execu�on Time (seconds)

Fig. 25  Execution times of classical bit strings—left or clockwise rotation

0

0.001

0.002

0.003

0.004

0.005

0.006

"101" "1011" "01110" "1101010"

Execu�on Time (seconds)

Fig. 26  Execution times of classical bit strings—right or anticlockwise rotation

0

0.001

0.002

0.003

0.004

0.005

0.006

"101" "1011" "01110" "1101010"

Execu�on Time (seconds)

Fig. 27  Execution times of quantum bit strings—rotation by bit swapping

Page 23 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

Conclusion
Based on the galloping rate of the development and implementation of classical and
quantum models, this paper also seeks to propose a model for circular bit rotation
using a conceptual bit prism drawn from the inspiration of white light going through
a glass prism. Existing techniques in circular bit rotation have some challenge with
respect to the fact that it does not have an end and keeps going on in cycles or in a
circle and also produces some form of repeating bit strings at some point in the rota-
tional process. This necessitated the need to use the bit prism concept in this work
to help address this challenge and from the method and results above, it has been
addressed incorporating a high level of strictness in the rotational process especially
for the classical aspect. The quantum bit rotation in this paper, however, uses a bit
swapping technique by avenue of a quantum swap gate made available in jsqubits.

Future works will be to use this concept for cryptographic purposes.

Table 1  Running time of bit rotation algorithms, techniques and circuits

Algorithm/technique Running time Operation and support

1 Circular shift O(n) upwards Permutation σ of the n entries in a tuple
Involves arithmetic operations

2 Arithmetic shift O(1)–O(n) –

3 Logical shift O(1)–O(n) Does not preserve a number’s sign bit
Every bit in the operand is simply moved a

given number of bit positions
Vacant bit positions are filled, usually with

zeros or one’s

4 Faster bit rotation (Improved version of
the circular shift)

O(n) Permutation σ of the n entries in a tuple
No arithmetic operations, only bit manipu-

lations

5 Bit shift and bit rotation algorithm with
Scilab implementation

O(NB-n) –

6 A highly efficient reconfigurable rotation
unit based on an inverse butterfly
network

Not applicable
because it is a
circuit

64-bit Single Instruction Single Data (SISD)
MultiMedia eXtensions/Streaming SIMD

Extensions (MMX/SSE) instructions

7 sb-rotate-byte

8 Fast MSB and LSB Rotate method – 8 bit data

9 CORDIC algorithm – Operand word-length of 54 bits

10 CORDIC II – –

11 VHDL 16-bit shifter Circuit 16 bit data

12 Power mux based on dynamic barrel
shifter using footed diode domino logic

Circuit 8 bit

13 8 bit barrel shifter using 8 × 1 multiplexer Circuit 8 bit

14 Quantum shift register Circuit Qubit data

15 CRotate and QRotate O(n) CRotate: 232 bytes or 264 bytes determined
by the amount of memory that the pro-
gram can access. The size of the array can
be increased from 1000 as is in the case
of the CRotate to up to 232 or 264

QRotate: n qubit

Page 24 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4

Abbreviations
CRotate: circular rotate; QRotate: quantum rotate; XOR: exclusive OR; LSL: logical shift left; LSR: logical shift right; LSB:
least significant bit; MSB: most significant bit; ROR: rotate right; ROL: rotate left; CPU: central processing unit; SLA: shift
left arithmetic; SRA: shift right arithmetic; SRL: shift left logical; SRL: shift right logical; RL: rotate left; RR: rotate right; GDI:
gate diffusion input; qubit: quantum Bit; CNOT: controlled not; SDLC: system development life cycle; jsqubits: JavaScript
quantum computer simulator; circ_rotate: circular rotate.

Acknowledgements
First and foremost, we would like to thank our Father for the inspiration to write this manuscript. This manuscript or
article would never have been possible without the support and guidance of various people at the University of Energy
and Natural Resources, Sunyani, Ghana. We also wish to express our sincere thanks to Prosper Kandabongee Yeng at
Norwegian University of Science and Technology for his vital inputs and proofreading.

Authors’ contributions
Study concept and design, and acquisition of literature were done by PN. Analysis and some portions of the method
were done by BAW. Finally, AFA helped in the interpretation of the results as well as conducted a critical revision of the
paper. All authors have read and approved the manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
On behalf of all authors, the corresponding author states that there is no competing interest.

Received: 10 September 2020 Accepted: 15 February 2021

References
	1.	 Dodge NB (2012) Shift and rotate instruction. http://www.utdal​las.edu/~dodge​/EE231​0/lec14​.pdf. Accessed 25 Jan

2020
	2.	 Yeng PK, Panford JK, Hayfron-Acquah JB, Twum F (2016) An efficient symmetric cipher algorithm for data encryp-

tion. Int Res J Eng Technol 03(05):8–9
	3.	 Damgard IB, Kundsen LR (1998) Two-key triple encryption. J Cryptol 11(3):209–218
	4.	 Black J, Rogaway P (2005) CBC MACs for arbitrary-length messages: the three-key constructions. J Cryptol

18:111–131
	5.	 Harris SL (2013) Digital building blocks. Digit Des Comput Arch . https​://doi.org/10.1016/B978-0-12-39442​4-5.00005​

-7
	6.	 Harris SL, Harris DM (2016) Shifters and rotators, digital design and computer architecture, ARM edition. Morgan

Kaufmann, pp 251–253. ISBN: 978-0-12-800056-4
	7.	 Brown B (2013) Shifting and shifters. Computer Science Department Southern Polytechnic State University. http://

ksuwe​b.kenne​saw.edu/facul​ty/rbrow​211/paper​s/shift​er.pdf. Accessed 25 Jan 2020
	8.	 Renesas Electronics Corporation (2008) Fast MSB and LSB rotate method for 8 bit data. https​://www.renes​as.com/

us/en/doc/produ​cts/mpumc​u/apn/001/reg05​b0008​_h8slp​ap.pdf. Accessed 25 Jan 2020
	9.	 Hilewitz Y, Lee RB (2007) Performing advanced bit manipulations efficiently in general-purpose processors. In: 18th

IEEE symposium on computer arithmetic (ARITH ’07), Montepellier, pp 251–260
	10.	 Guston D (2014) Adding standard circular shift operators for computer integers. Programming language C++,

evolution working group. http://www.open-std.org/jtc1/sc22/wg21/docs/paper​s/2014/n3990​.pdf. Accessed 25 Jan
2020

	11.	 Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17(6):525–532
	12.	 Feynman RP (1986) Quantum mechanical computers. Found Phys 16(6):507–531
	13.	 Parhami B (2006) Fault tolerant reversible circuits. Asilomar Conf Signals Syst Comput 2006:1726–1729
	14.	 Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253
	15.	 Muwafi JA, Fettweis G, Neff HW (1999) Circuit for rotating, left shifting, or right shifting bits. United States Patent.

Patent No: 5,978,822
	16.	 Bharathesh PN, Manju D (2019) A novel low power MUX based dynamic barrel shifter using footed diode domino

logic. Int J Innov Technol Exp Eng 8(6S3):307–311
	17.	 Priyanka AP, Mehra R (2016) Design and performance analysis of barrel shifter using 45nm technology. IOSR J VLSI

Signal Process 6(3):38–44
	18.	 Mitra SK, Chowdhury AR (2015) Optimized logarithmic barrel shifter in reversible logic synthesis. In: 28th Interna-

tional conference on VLSI design, Bangalore, India, pp 441–446
	19.	 Aarthi R, Kavitha S (2017) Image encryption using binary bit plane and rotation method for an image security. Int J

Eng Dev Res 5(2):1–6
	20.	 Minematsu K. (2013) A short universal hash function from bit rotation, and applications to blockcipher modes.

In: Susilo W, Reyhanitabar R (eds) Provable security. ProvSec 2013. Lecture notes in computer science, vol 8209.
Springer, Berlin. https://doi.org/https​://doi.org/10.1007/978-3-642-41227​-1_13

	21.	 Shah S, Khan L, Maurya VK (2018) Designing of low power GDI based 8-bit barrel shifter. J Emerg Technol Innov Res
5(9):397–400

http://www.utdallas.edu/~dodge/EE2310/lec14.pdf
https://doi.org/10.1016/B978-0-12-394424-5.00005-7
https://doi.org/10.1016/B978-0-12-394424-5.00005-7
http://ksuweb.kennesaw.edu/faculty/rbrow211/papers/shifter.pdf
http://ksuweb.kennesaw.edu/faculty/rbrow211/papers/shifter.pdf
https://www.renesas.com/us/en/doc/products/mpumcu/apn/001/reg05b0008_h8slpap.pdf
https://www.renesas.com/us/en/doc/products/mpumcu/apn/001/reg05b0008_h8slpap.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3990.pdf
https://doi.org/10.1007/978-3-642-41227-1_13

Page 25 of 25Nimbe et al. Journal of Electrical Systems and Inf Technol (2021) 8:4 	

	22.	 Naveen Kumar SK, Sharath Kumar HS, Panduranga HT (2012) Encryption approach for images using bits rotation
reversal and extended hill cipher techniques. Int J Comput Appl (0975-8887) 59(16):10–14

	23.	 Subong RA, Fajardo AC, Kim YJ (2018) Adaptive bit rotation and inversion scoring: a novel approach to lsb image
steganography. In: IEEE 10th international conference on humanoid. nanotechnology. information technology.
Communication and control. Environment and management (HNICEM), Baguio City, Philippines, pp 1–6

	24.	 Perkowski M, Lukac M, Kerntopf P, Pivtoraiko M, Folgheraiter M, Choi YW, Kim J, Lee D, Hwangbo W, Kim H (2003)
A hierarchical approach to computer-aided design of quantum circuits. Electr Comput Eng Fac Publ Present
228:201–209

	25.	 Microsoft (2017) The Qubit. https​://docs.micro​soft.com/en-us/quant​um/conce​pts/the-qubit​ Accessed 25 Jan 2020
	26.	 Lee J, Lee EK (2001) Quantum shift register. Department of Chemistry, School of Molecular Science. Korea Advanced

Institute of Science and Technology
	27.	 Quantum Inspire (2018) Rotation operators. https​://www.quant​um-inspi​re.com/kbase​/rotat​ion-opera​tors/.

Accessed 25 Jan 2020
	28.	 Foell https​://www.resea​rchga​te.net/profi​le/Charl​es_Foell​_IIIC.A III, (2016). Luminescent properties of Pb-based

(PbX) colloidal quantum dots (CQDs) in vacuum, on silicon and integrated with a silicon-on-insulator (SOI) photonic
integrated circuit (PIC). PhD Dissertation, University of British Columbia Library

	29.	 Weik MH (2000) circular shift. In: Computer science and communications dictionary. Springer, Boston. https​://doi.
org/10.1007/1-4020-0613-6_2654

	30.	 Veerendra (2018) CBSE sample papers. CBSE Class 10 Science practical skills-refraction through prism. https​://www.
aplus​toppe​r.com/cbse-class​-10-scien​ce-lab-manua​l-refra​ction​-prism​/. Accessed 25 Jan 2020

	31.	 Lowe C (2017) Sciencing, science projects with a prism. https​://scien​cing.com/scien​ce-proje​cts-prism​-79767​
07.html. Accessed 25 Jan 2020

https://docs.microsoft.com/en-us/quantum/concepts/the-qubit
https://www.quantum-inspire.com/kbase/rotation-operators/
https://www.researchgate.net/profile/Charles_Foell_IIIC.A
https://doi.org/10.1007/1-4020-0613-6_2654
https://doi.org/10.1007/1-4020-0613-6_2654
https://www.aplustopper.com/cbse-class-10-science-lab-manual-refraction-prism/
https://www.aplustopper.com/cbse-class-10-science-lab-manual-refraction-prism/
https://sciencing.com/science-projects-prism-7976707.html
https://sciencing.com/science-projects-prism-7976707.html

	Rotation of bits: a classical and quantum perspective
	Abstract
	Introduction
	Application
	Quantum perspective
	Problem, objective and contribution

	Method
	Classical perspective (CRotate)
	Left (or anticlockwise) rotation
	Right (or clockwise) rotation
	Quantum–classical perspective
	Quantum perspective (QRotate)
	Alternative approach

	Results
	Classical implementation using C++
	Left (or anticlockwise) rotation
	Right (or clockwise) rotation
	Quantum implementation using jsqubits
	Performance analysis of bit rotation algorithms and techniques

	Discussion
	Deduction

	Conclusion
	Acknowledgements
	References

