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Introduction
Static economic dispatch (SED) allocates the load demand which is constant for a given 
interval of time, among the online generators economically while satisfying various con-
straints including static behavior of the generators. Dynamic economic dispatch (DED) 
is an extension of static economic dispatch problem. DED is the most accurate formu-
lation of the economic dispatch problem, but it is the most difficult to solve because 
of its large dimensionality. The first paper in this area appeared in 1972 [1] by Bechert 
and Kwatny. Since the DED was introduced, several methods [2–13] such as Lagran-
gian relaxation, gradient projection method, dynamic programming, hybrid EP and SQP, 
hybrid HNN-QP, hybrid differential evolution, etc., have been employed for solving this 
problem. However, all of these methods may not be able to find an optimal solution and 
usually stuck at a local optimum solution.

Recently, stochastic search algorithms [14–27] such as simulated annealing (SA), 
genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization 
(PSO), and differential evolution (DE) have been successfully used to solve power system 
optimization problems due to their ability to find the near-global solution of a noncon-
vex optimization problem.
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This paper investigates the applicability of the following five different AI techniques in 
dynamic economic dispatch (DED) problem: differential evolution (DE), particle swarm 
optimization (PSO), evolutionary programming (EP), genetic algorithm (GA), and simu-
lated annealing (SA). The AI techniques are evaluated against a test system as a common 
testbed for comparison with each other.

Methods
Several artificial intelligence (AI) methods have evolved in recent past that facilitate to solve 
optimization problems which were previously difficult or impossible to solve. These tech-
niques include differential evolution, particle swarm optimization, evolutionary program-
ming, genetic algorithm, simulated annealing, etc. Reports of applications of each of these 
techniques have been widely published. The most important advantage of AI techniques 
lies in the fact that they are not limited by restrictive assumptions about the search space 
like continuity, existence of derivative of objective function, etc. These methods share some 
similarities. DE is introduced first, and followed by PSO, EP, GA, and SA.

Differential evolution

Differential evolution (DE) [14–16] is a type of evolutionary algorithm originally proposed 
by Price and Storn [14] for optimization problems over a continuous domain. DE is excep-
tionally simple, significantly faster, and robust. The basic idea of DE is to adapt the search 
during the evolutionary process. At the start of the evolution, the perturbations are large, 
since parent populations are far away from each other. As the evolutionary process matures, 
the population converges to a small region and the perturbations adaptively become small. 
As a result, the evolutionary algorithm performs a global exploratory search during the 
early stages of the evolutionary process and local exploitation during the mature stage of 
the search. In DE, the fittest of an offspring competes one-to-one with that of correspond-
ing parent which is different from other evolutionary algorithms. This one-to-one compe-
tition gives rise to faster convergence rate. Price and Storn gave the working principle of 
DE with simple strategy in [14]. Later on, they suggested ten different strategies of DE [16]. 
Strategy-7 (DE/rad/1/bin) is the most successful and widely used strategy. The key param-
eters of control in DE are population size ( NP ), scaling factor ( SF ), and crossover constant 
( CR ). The optimization process in DE is carried out with three basic operations: mutation, 
crossover, and selection. The DE algorithm is described as follows:

Initialization

The initial population of NP vectors is randomly selected based on uniform probability dis-
tribution for all variables to cover the entire search uniformly. Each individual Xi is a vector 
that contains as many parameters as the problem decision variables D . Random values are 
assigned to each decision parameter in every vector according to:

where i = 1, . . . ,NP and j = 1, . . . ,D ; Xmin
j  and Xmax

j  are the lower and upper bounds of 
the jth decision variable; U

(

Xmin
j ,Xmax

j

)

 denotes a uniform random variable ranging 

(1)X0
ij ∼ U

(

Xmin
j ,Xmax

j

)

,



Page 3 of 18Pattanaik et al. Journal of Electrical Systems and Inf Technol             (2019) 6:1 

over 
[

Xmin
j ,Xmax

j

]

 . X0
ij is the initial jth variable of ith population. All the vectors should 

satisfy the constraints. Evaluate the value of the cost function f
(

X0
i

)

 of each vector.

Mutation

DE generates new parameter vectors by adding the weighted difference vector between 
two population members to a third member. For each target vector Xg

i  at gth generation, 
the noisy vector X/g

i  is obtained by

where Xg
a , X

g
b and Xg

c  are selected randomly from NP vectors at g th generation and 
a  = b  = c  = i . The scaling factor ( SF ), in the range 0 < SF ≤ 1.2 , controls the amount of 
perturbation added to the parent vector. The noisy vectors should satisfy the constraint.

Crossover

Perform crossover for each target vector Xg
i  with its noisy vector X/g

i  and create a trial 
vector X//g

i  , such that

where ρ is an uniformly distributed random number within [0, 1]. The crossover con-
stant ( CR ), in the range 0 ≤ CR ≤ 1 , controls the diversity of the population and aids the 
algorithm to escape from local optima.

Selection

Perform selection for each target vector, Xg
i  by comparing its cost with that of the 

trial vector, X//g
i  . The vector that has lesser cost of the two would survive for the next 

generation:

The process is repeated until the maximum number of generations or no improvement 
is seen in the best individual after many generations.

Particle swarm optimization

Particle swarm optimization (PSO) [17, 18] has been developed under the scope of artificial 
life where it is inspired by the natural phenomenon of fish schooling or birds flocking. PSO 
is basically based on the fact that in the quest of reaching the optimum solution in a multi-
dimensional space, a population of particles is created whose present coordinate determines 
the cost function to be minimized. After each iteration, the new velocity and the new posi-
tion of each particle are updated on the basis of a summated influence of each particle’s pre-
sent velocity, distance of the particle from its own best performance achieved so far during 

(2)X
/g
i = X

g
a + SF

(

X
g
b − X

g
c

)

, i ∈ NP ,

(3)X
//g
i =

{

X
/g
i , if ρ ≤ CR

X
g
i , otherwise

, i ∈ NP ,

(4)X
g+1
i =

{

X
//g
i , if f

(

X
//g
i

)

≤ f
(

X
g
i

)

X
g
i , otherwise

, i ∈ NP
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the search process and the distance of the particle from the leading particle, i.e., the particle 
which at present is globally the best particle producing till now the best performance.

Usually, x and v are the variables employed to denote the position and the velocity 
of a particle in a multidimensional solution space. In a d dimensional space, the posi-
tion and velocity of a particle i are represented as d × 1 vectors, xi = (xi1, xi2, . . . , xid) 
and vi = (vi1, vi2, . . . , vid) respectively. For each particle i , the best position found so far 
is stored as another d × 1 vector pbesti = (pbesti1, pbesti2, . . . , pbestid) . The best global 
particle among all particle i is denoted as gbest and its coordinate in the d th dimension 
is given as gbestd . Hence, the velocity and position update equations for the i th particle 
in the d th dimension in the (k + 1) th iteration, based on the performance in k th itera-
tion are given as:

where D stands for the total number of dimensions for the multidimensional search 
problem and NP stands for the population size. c1 and c2 give acceleration constants 
which provide relative stochastic weighting (implemented by the rand() function which 
generates any value ∈ [0, 1] ) of the deviation from the best own performance of the par-
ticle itself and the best performance of the group as a whole, so far, in the d th dimen-
sion. The velocity of the particle in the k th iteration in the d th dimension is given as 
vmin
d ≤ vkid ≤ vmax

d  . Here, vmax is influential to determine the resolution with which 
regions are to be searched between the present position and the target position. A 
proper value should be chosen, such that vmax is neither too high nor too small.

The present system employs the PSO algorithm with adaptable inertia weight w , dur-
ing the entire process of search, so that we can obtain a suitable balance between global 
and local explorations. In this work, the inertia weight w is set according to the following 
equation:

where itermax is the maximum number of iterations and iter is the current number of 
iterations. We start with a high value of wmax , such that we can perform aggressive global 
search initially in quest of potential good solution and gradually reduce w , such that we 
can fine tune our search locally as we move closer and closer to the minimum point.

Evolutionary programming

Evolutionary programming (EP) [20] is a technique in the field of evolutionary com-
putation. It seeks the optimal solution by evolving a population of candidate solutions 
over a number of generations or iterations. During each iteration, a second new pop-
ulation is formed from an existing population through the use of a mutation operator. 
This operator produces a new solution by perturbing each component of an existing 
solution by a random amount. The degree of optimality of each of the candidate solu-
tions or individuals is measured by their fitness, which can be defined as a function 

(5)
v
(k+1)
id = w × vkid + c1 × rand()×

(

pbestid − xkid

)

+ c2 × rand()×
(

gbestd − xkid

)

(6)x
(k+1)
id = xkid + v

(k+1)
id , i ∈ NP , d ∈ D,

(7)w = wmax −
wmax − wmin

itermax
× iter,
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of the objective function of the problem. Through the use of a competition scheme, 
the individuals in each population compete with each other. The winning individuals 
form a resultant population, which is regarded as the next generation. For optimiza-
tion to occur, the competition scheme must be such that the more optimal solutions 
have a greater chance of survival than the poorer solutions. Through this, the popula-
tion evolves towards the global optimal point. The algorithm is described as follows:

1.	 Initialization: The initial population of control variables is selected randomly from the 
set of uniformly distributed control variables ranging over their upper and lower limits. 
The fitness score fi is obtained according to the objective function and the environment.

2.	 Statistics: The maximum fitness fmax , minimum fitness fmin , the sum of fitness 
∑

f  , 
and average fitness favg of this generation are calculated.

3.	 Mutation: Each selected parent, for example, Xi , is mutated and added to its popula-
tion with the following rule:

where D is the number of decision variables in an individual, NP is the population 
size, Xij denotes the j th element of the i th individual; N

(

µ, σ 2
)

 represents a Gauss-
ian random variable with mean µ and variance σ 2 ; fmax is the maximum fitness of 
the old generation which is obtained in statistics; xj and xj are, respectively, maxi-
mum and minimum limits of the j th element; and γ is the mutation scale, 0 < γ ≤ 1 , 
that could be adaptively decreased during generations. If any mutated value exceeds 
its limit, it will be given the limit value. The mutation process allows an individual 
with larger fitness to produce more offspring for the next generation.

4.	 Competition: Several individuals ( k ) which have the best fitness are kept as the par-
ents for the next generation. Other individuals in the combined population of size 
( 2NP − k ) have to compete with each other to get their chances for the next genera-
tion. A weight value wi of the i th individual is calculated by the following competition:

where Nt is the competition number generated randomly; wi,t is either 0 for loss or 
1 for win as the i th individual competes with a randomly selected ( rth) individual in 
the combined population. The value of wi,t is given in the following equation:

where fr is the fitness of randomly selected r th individuals, and fi is the fitness of the 
i th individual. When all 2NP individuals, get their competition weights, they will be 
ranked in a descending order according to their corresponding value wi . The first m 
individuals are selected along with their corresponding fitness fi to be the bases for 
the next generation. The maximum, minimum, and the average fitness and the sum 
of the fitness of the current generation are then calculated in the statistics.

(8)Xi+m,j = Xij + N

(

0, γ
(

xj − xj

) fi

fmax

)

, j ∈ D, i ∈ NP ,

(9)wi =

Nt
∑

t=1

wi,t ,

(10)wi,t =

{

1 if fi < fr
0 otherwise,



Page 6 of 18Pattanaik et al. Journal of Electrical Systems and Inf Technol             (2019) 6:1 

5.	 Convergence test: If the convergence condition is not met, the mutation and compe-
tition will run again. The maximum generation number can be used for convergence 
condition. Other criteria, such as the ratio of the average and the maximum fitness of 
the population, are computed and generations are repeated until

where δ should be very close to 1, which represents the degree of satisfaction. If the 
convergence has reached a given accuracy, an optimal solution has been found for an 
optimization problem.

Genetic algorithm

Genetic algorithm [21] is based on the mechanics of natural selection. An initial popu-
lation of candidate solutions is created randomly. Each of these candidate solutions is 
termed as individual. Each individual is assigned a fitness, which measures its quality. 
During each generation of the evolutionary process, individuals with higher fitness are 
favored and more probabilities to be selected as parents. After parents are selected for 
reproduction, they produce children via the processes of crossover and mutation. The 
individuals formed during reproduction explore different areas of the solution space. 
These new individuals replace lesser fit individuals of the existing population.

Due to difficulties of binary representation when dealing with continuous search space 
with large dimensions, the proposed approach has been implemented using real-coded 
genetic algorithm (RCGA) [22, 23]. The simulated Binary Crossover (SBX) and polyno-
mial mutation are explained as follows.

Simulated binary crossover (SBX) operator

The procedure of computing child populations c1 and c2 from two parent populations y1 
and y2 under SBX operator as follows:

1.	 Create a random number u between 0 and 1.
2.	 Find a parameter γ using a polynomial probability distribution as follows:

where γ = 2− δ−(ηc+1). and δ = 1+ 2
y2−y1

min
[(

y1 − yl
)

,
(

yu − y2
)]

	 Here, the parameter y is assumed to vary in [yl , yu] . Here, the parameter ηc is the 
distribution index for SBX and can take any non-negative value. A small value of 
ηc allows the creation of child populations far away from parents and a large value 
restricts only near-parent populations to be created as child populations.

3.	 The intermediate populations are calculated as follows:

(11)
{

favg
/

fmax

}

≥ δ,

(12)γ =

{

(uγ )1/ (ηc+1), if u ≤ 1
γ

(

1
/

(2− uγ )
)1/ (ηc+)

, otherwise,

(13)
cp1 = 0.5

[(

y1 + y2
)

− γ
(∣

∣y2 − y1
∣

∣

)]

cp2 = 0.5
[(

y1 + y2
)

+ γ
(∣

∣y2 − y1
∣

∣

)]
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Each variable is chosen with a probability pc and the above SBX operator is applied 
variable-by-variable.

Polynomial mutation operator

A polynomial probability distribution is used to create a child population in the vicinity 
of a parent population under the mutation operator. The following procedure is used:

1.	 Create a random number u between 0 and 1.
2.	 Calculate the parameter δ as follows:

where φ =
min[(cp−yl),(yu−cp)]

(yu−yl)

	 The parameter ηm is the distribution index for mutation and takes any non-negative 
value.

3.	 Calculate the mutated child as follows:

The perturbance in the population can be adjusted by varying ηm and pm with genera-
tions as given below:

where ηmmin is the user-defined minimum value for ηm , pm is the probability of mutation, 
and D is the number of decision variables.

Simulated annealing

Simulated annealing [25, 26] is a powerful optimization technique which exploits the 
resemblance between a minimization process and the cooling of molten metal. The physical 
annealing process is simulated in the simulated annealing (SA) technique for the determi-
nation of global or near-global optimum solutions for optimization problems. In this algo-
rithm, a parameter T0 , called temperature, is defined. Starting from a high temperature, a 
molten metal is cooled slowly until it is solidified at a low temperature. The iteration num-
ber in the SA technique is analogous to the temperature level. During each iteration, a can-
didate solution is generated. If this solution is a better solution, it will be accepted and used 
to generate yet another candidate solution. If it is a deteriorated solution, the solution will 
be accepted when its probability of acceptance Pr(�) as given by Eq. (17) is greater than a 
randomly generated number between 0 and 1:

(14)δ =







�

2u+ (1− 2u)(1− ϕ)(ηm+1)
�

1
(ηm+1) − 1, if u ≤ 0.5

1−
�

2(1− u)+ 2(u− 0.5)(1− ϕ)(ηm+1)
�

1
(ηm+1) , otherwise,

c1 = cp1 + δ
(

yu − yl
)

c2 = cp2 + δ
(

yu − yl
)

(15)ηm = ηmmin + gen

(16)pm =
1

D
+

gen

genmax

(

1−
1

D

)

,

(17)Pr(�) = 1
/(

1+ exp
(

�
/

Tv

))

,
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where � is the amount of deterioration between the new and the current solutions, 
and Tv is the temperature at which the new solution is generated. Accepting deterio-
rated solutions in the above manner enables the SA solution to ‘jump’ out of the local 
optimum solution points and to seek the global optimum solution. In forming the new 
solution, the current solution is perturbed [28] according to the Gaussian probability 
distribution function (GPDF). The mean of the GPDF is taken to be the current solution, 
and its standard deviation is given by the product of the temperature and a scaling factor 
σ . The value of σ is less than one, and together with the value of temperature, it governs 
the size of the neighborhood space of the current solution and hence the amount of per-
turbation. The amount of perturbation is dependent upon the temperature when σ is 
kept at a constant value. In each iteration, the procedure for generating and testing the 
candidate solution is repeated for a specified number of trials, so that thermal equilib-
rium is reached for each temperature. The last accepted candidate solution is then taken 
as the starting solution for the generation of candidate solutions in the next iteration. 
Simulated annealing with a slow cooling schedule usually has larger capacity to find the 
optimal solution than that of a fast cooling schedule. The reduction of the temperature 
in successive iterations is governed by the following geometric function [25]:

where v is the iteration number and r is temperature reduction factor. T0 is the initial 
temperature, the value of which can be set arbitrarily or estimated using the method 
described in Ref. [25]. The iterative process is terminated when there is no significant 
improvement in the solution after a prespecified number of iterations. It can also be ter-
minated when the maximum number of iterations is reached.

Problem formulation
Normally, the DED problem minimizes the following total production cost of committed units:

The fuel cost function of each unit considering valve-point effect [24] can be expressed as:

Subject to the following equality and inequality constraints for the t th interval in the 
scheduled horizon:

	(i)	 Real power balance

	(ii)	 Real power operating limits

	(iii)	 Generating unit ramp rate limits

(18)Tv = r(v−1)T0,

(19)F =

T
∑

t=1

N
∑

i=1

Fit(Pit)

(20)Fit(Pit) = ai + biPit + ciP
2
it +

∣

∣

∣
di sin

(

ei

(

Pmin
i − Pit

))∣

∣

∣

(21)
N
∑

i=1

Pit − PDt − PLt = 0 t ∈ T

(22)Pmin
i ≤ Pit ≤ Pmax

i i ∈ N, t ∈ T
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Determination of generation level of slack generator
N committed generators deliver their power output subject to the power balance con-
straint (21), the respective capacity constraints (22), and generating unit ramp rate limits 
(23). Assuming the power loading of first ( N − 1 ) generators are known, the power level 
of the N  th generator (i.e., the slack generator) is given by:

The transmission loss PLt is a function of all the generators including that of the 
dependent generator and it is given by:

Expanding and rearranging, Eq. (24) becomes:

The loading of the dependent generator (i.e., Nth) can then be found by solving 
Eq. (26) using standard algebraic method.

Results and discussion
A comparative study is performed for the five AI techniques for solving the dynamic 
economic dispatch (DED) problem for a ten-unit test system with nonsmooth fuel 
cost function is used. The demand of the system has been divided into 24 intervals. 
Unit data have been adopted from [10]. All AI techniques for the DED problem are 
implemented using MATLAB 7.0 on a PC (Pentium-IV, 3.0 GHz). The DED problem 
is solved by using DE, PSO, EP, RCGA, and SA. In case of DE, the population size 
( NP ), scaling factor (SF ) , and crossover rate (CR) have been selected as 50, 0.75, and 
1.0, respectively, for the test system under consideration. In case of PSO, parameters 
are taken as NP = 50, wmax = 0.2 , wmin = 0.05 , c1 = 0.35 , and c2 = 0.35 . The popula-
tion size ( NP ) and scaling factor ( F  ) have been selected as 100 and 0.1, respectively, 
in case of EP. In case of RCGA, the population size, crossover, and mutation prob-
abilities have been selected as 100, 0.07, and 0.5, respectively. The initial temperature 
( T0 ) of SA algorithm has been determined using the procedures described in [28]. As 
per guideline [25], the value of r lies in the range from 0.80 to 0.99. For seeking the 
optimal solution, the value of r is required to be set close to 0.99, so that a slow cool-
ing process is simulated. The appropriate setting of r is set by experimenting with its 
value in the range from 0.95 to 0.99, and this value is found to be 0.98. The number 
of trials at each temperature has been taken 30. Maximum number of generations has 

(23)
Pit − Pi(t−1) ≤ URi, i ∈ N , t = 2, 3, . . . ,T

Pi(t−1) − Pit ≤ DRi, i ∈ N , t = 2, 3, . . . ,T

(24)PNt = PDt + PLt −

N−1
∑

i=1

Pit t ∈ T

(25)PLt =

N−1
∑

i=1

N−1
∑

j=1

PitBijPjt + 2PNt

(

N−1
∑

i=1

BNiPit

)

+ BNNP
2
Nt t ∈ T

(26)

BNNP
2
Nt+

�

2

N−1
�

i=1

BNiPit − 1

�

PNt+



PDt +

N−1
�

i=1

N−1
�

j=1

PitBijPjt −

N−1
�

i=1

Pit



 = 0 t ∈ T
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been selected 400 for all the five AI techniques discussed in this paper. Tables 1, 2, 
3, 4, 5 reveal hourly generation schedule, minimum production cost, and CPU time 
obtained from DE, PSO, EP, RCGA, and SA, respectively. Table 6 shows the compari-
son of cost and CPU time among DE, PSO, EP, RCGA, and SA. Figure 1 shows the 
cost convergence characteristics obtained from DE, PSO, EP, RCGA, and SA.

The present article describes different AI methods and applied on ten-unit test sys-
tem. The cost convergence characteristics are obtained by the application of various 
AI method and its revealed that DE gives better result than others. The comparison 
can be done by the application of improved real-coded genetic algorithm (IRCGA) 
to dynamic economic dispatch problem. IRCGA will give better result than other AI 
methods defined in this article.

Conclusion
In this paper, artificial intelligent techniques have been applied to solve dynamic 
economic dispatch problem with nonsmooth fuel cost function. The results of the 
dynamic economic dispatch using different artificial intelligent techniques are almost 
identical. When the results are compared with each other, differential evolution seems 
to be better considering cost and CPU time.

Table 6  Comparison of cost and CPU time among five AI techniques

Method Cost ( ×10
6$) CPU time (s)

DE 2.5003 45.68

PSO 2.5484 46.84

EP 2.5722 68.47

RCGA​ 2.5854 72.68

SA 2.5372 47.87

0 50 100 150 200 250 300 350 400
2.5

2.6

2.7

2.8
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3

3.1
x 10

6

C
os

t($
)

Generation

DE
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Fig. 1  Cost convergence characteristics obtained from different artificial intelligence techniques
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List of symbols

Variables
Pit: real power output of i  th unit during time interval t ; Pmin

i
, Pmax

i
: lower and upper generation limits for i  th unit; PDt: 

load demand at the time interval t ; PLt: transmission line losses at time t ; ai , bi , ci , di , ei: cost coefficients of i  th unit; Fit(Pit)
: cost of producing real power output Pit at time t ; URi , DRi: ramp-up and ramp-down rate limits of the ith generator; N: 
number of generating units; NP: population size; Nc: number of clones; T : number of intervals in the scheduled horizon.

Abbreviations
AI: artificial intelligence; DE: differential evolution; PSO: particle swarm optimization; SA: simulated annealing; DED: 
dynamic economic dispatch; SED: static economic dispatch; RCGA​: real-coded genetic algorithm; IRCGA​: improved real-
coded genetic algorithm.
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See Tables 7 and 8.

The transmission loss formula coefficients are:
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0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.000016

0.000017 0.000015 0.000012 0.000010 0.000011 0.000036 0.000012 0.000012 0.000014 0.000015

0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.000018

0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.000040 0.000015 0.000016

0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.000019

0.000020 0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016 0.000019 0.000044









































Table 7  Generator characteristics

Unit P
max

i P
min

i
ai bi ci di ei URi DRi

MW MW $/h $/MWh $/(MW)2 h $/h rad/MW MW/h MW/h

1 150 470 786.7988 38.5397 0.1524 450 0.041 80 80

2 135 470 451.3251 46.1591 0.1058 600 0.036 80 80

3 73 340 1049.9977 40.3965 0.0280 320 0.028 80 80

4 60 300 1243.5311 38.3055 0.0354 260 0.052 50 50

5 73 243 1658.5696 36.3278 0.0211 280 0.063 50 50

6 57 160 1356.6592 38.2704 0.0179 310 0.048 50 50

7 20 130 1450.7045 36.5104 0.0121 300 0.086 30 30

8 47 120 1450.7045 36.5104 0.0121 340 0.082 30 30

9 20 80 1455.6056 39.5804 0.1090 270 0.098 30 30

10 10 55 1469.4026 40.5407 0.1295 380 0.094 30 30

Table 8  Load demands

Hour PD (MW) Hour PD (MW) Hour PD (MW)

1 1036 9 1924 17 1480

2 1110 10 2022 18 1628

3 1258 11 2106 19 1776

4 1406 12 2150 20 1972

5 1480 13 2072 21 1924

6 1628 14 1924 22 1628

7 1702 15 1776 23 1332

8 1776 16 1554 24 1184
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