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Abstract 

Improvement of particle swarm optimization (PSO) is relevant to solving the inherent 
local optima and premature convergence problem of the PSO. In this paper, a novel 
improvement of the particle swarm optimization is provided to curb the problem 
of the classical PSO. The proposed improvement modifies the updating velocity 
function of the PSO, and it uses a local best murmuration particle which is found 
using the k-means clustering technique. In this contribution, each particle moves 
towards the global best position by not only using the personal best and global 
best, but particles are modelled to move in murmuration towards the global best 
using the personal best, global best and a local best particle known as the local best 
murmuration particle. The improved model was tested against the traditional PSO 
and two other variants of the PSO and genetic algorithm (GA) using 18 benchmark 
test functions. The proposed improvement demonstrated superior exploration abili-
ties by achieving the best optimum values in 15 out of 18 functions, particularly 
in the multimodal functions, where it achieved the best optimum value in all 6 cases. It 
also achieved the best worst-case values in 12 out of 18 functions, especially in the var-
iable-dimension functions, where other algorithms showed significant escalation, indi-
cating the proposed improvement’s reliability and robustness. In terms of convergence, 
the proposed improvement exhibited the best convergence rate in all 18 functions. 
These findings highlight the impressive ability of the proposed improvement to con-
verge swiftly without compromising accuracy.
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Introduction
The use of the collective behaviour of animals as evolutionary optimization algo-
rithms in finding optimal solution to real-life problems has increased over the past 
decades [1, 2]. These heuristic algorithms provide simple step-by-step approach in 
solving problems that traditional linear and nonlinear programming techniques 
would find difficulty in solving. Over the years, new metaheuristic techniques have 
been developed using the behaviour of several animals as additions to the popular 
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particle swarm optimization and genetic algorithm [2–7]. Though new algorithms 
have come in over the years, the efficiency of the particle swarm optimization cannot 
be overemphasized. PSO is well known and is a widely used algorithm because of its 
simplicity, high efficiency and accuracy [8]. The superiority of PSO over other algo-
rithms has been shown in [8–10]. Notwithstanding, the efficacy and simplicity of the 
PSO algorithm as compared to other techniques, the PSO has a major drawback of 
sometimes converging at local optima and premature convergence. Many researchers 
have over the years provided various variants of the PSO to address these challenges. 
The work in [11] made the acceleration constants of PSO adaptive to optimize the two 
acceleration constants in the updating velocity function. Xu et  al. [12] also used an 
adaptive weight to optimize the inertia weight and other variants to simultaneously 
remodel the inertia weight and acceleration constants [13, 14]. An intensive study has 
shown that the focus of researchers has mainly been on modifying either the inertia 
weight or the acceleration constants of the velocity function of the PSO in order to 
solve the local optima and premature convergence problem of the PSO.

The velocity function for the updating of particles positions of the PSO was mod-
elled based on the social behaviour of a flock of birds when searching for food, where 
each particle (bird) moves towards the best position where there is food (global best) 
by looking at the position of the global best and its personal knowledge of where there 
is food (personal best). However, recent study and models have shown that birds also 
move to their global best position in murmuration. Murmuration of birds refers to 
the pattern-like movement of birds towards an area in other to keep warmth, stay 
away from predators and also create beauty [15]. According to [16] there is a ‘sound 
of low murmur’ birds at an area make from several wingbeats and soft flight calls in 
other to move in murmuration towards their proposed place of more food. The work 
in [17] who modelled the behaviour of birds in murmuration discovered that flock of 
birds in murmuration towards a new position or place adapts their direction of flight 
and speed or velocity to about seven of the birds that fly closest to it. Richardson and 
Chemero [18] also revealed that birds in a flock can influence one another to account 
for their speed variability within groups inside of the flock. Smaldino [19] also dis-
covered that when one bird changes its motion, its neighbours imitate it and change 
spreads within the subgroup of the flock in other to change speed and lead to a col-
lective beautiful display called murmuration. Evidence from biological data reiterates 
that there is a group-to-group speed variability among birds in search for food [20]. In 
a flock with many birds, it is clear that not every bird will be able to keep track of the 
other birds but rather move in sub groups [21]. Moreover, [22, 23] has shown that a 
‘cheerleader’ bird always serves as the cornerstone for the self-organized speed varia-
tion of each bird in each subgroup inside of a flock. Cavagna et al. [24] recommended 
that we need to consider the velocity of the murmuration as a whole, in modelling the 
velocities of individual birds.

The above shows that each bird in an area does not only move towards the global best 
position by just looking at its personal best position but also imitate the movement of a 
leading bird in its locality. Inspired by these phenomenal behaviours of birds in choosing 
a local leader to murmurate towards the global best position, this contribution remodels 
the velocity updating function of the particle swarm optimization to include a local best 
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murmuration particle in other to solve the local optima problem and also ensure fast 
convergence of the PSO.

The remaining sections of this paper are organized as follows: In section  “Introduc-
tion”, the concept of particle swarm optimization and k-means clustering that was 
used to cluster particles into groups is discussed. The novel approach in modifying the 
velocity function of the PSO using a local best murmuration particle is detailed in sec-
tion “Methodology”. Section “Methodology” presents the testing functions used to test 
the efficacy of the improved PSO algorithm against the classical PSO and another vari-
ant of the PSO. The results and analysis are detailed in sections “Results and discussion” 
and “Conclusion” concludes the paper.

Particle swarm optimization
The particle swarm optimization algorithm is one of the most widely used optimization 
algorithms. It has its applications in Engineering, Medical Science, Business, and Social 
Science, among others. The technique was put forward by two American scholars, Eber-
hart and Kennedy, in the year 1995. According to the researchers, there is an invisible 
communication within a flock of birds that are seen dispersed in their search for food 
making them able to find the best place in their search space. Inspired by this phenom-
enon, Eberhart and Kennedy simulated birds’ foraging behaviour and proposed parti-
cle swarm optimization. After their proposition, the PSO has seen exponential growth 
because of its simplicity and accuracy in determining optimal solutions. The PSO as a 
heuristic algorithm optimizes a problem by iteratively providing candidate solutions 
known as particles. At the initialization phase of the PSO, these particles are randomly 
chosen within specified boundary conditions together with two random values (r1 and 
r2), two acceleration constants (c1 and c2), and inertia weight (w) that helps in updating 
the velocity of each particle. The updating velocity function is shown in Eq. (1). Before 
each particle’s velocity is updated, the best position each particle knows as the best can-
didate solution (personal best) and the overall best position in the swarm of particles 
known as the global best are chosen when each particle runs through the modelled func-
tion of the given problem (objective function). The updated velocity is used to update 
each particle position using Eq.  (2). This process is continued until the best position 
is found among the particles or until a stopping criterion is met (e.g., total number of 
iterations).

where

•	 Vi(t) is the velocity of particle i at time t.
•	 w is the inertia weight.
•	 c1, c2 and c3 are acceleration coefficients.
•	 r1, r2 and r3 are random numbers uniformly distributed between 0 and 1.
•	 Xi(t) is the position of particle i at time t.
•	 Pibest, and Gbest are the personal best and global best, respectively.

(1)Vi(t + 1) = wVi(t)+ r1 c1(Pibest − Xi(t))+ r2 c2(Gbest − Xi(t))

(2)Xi(t + 1) = Xi(t)+ Vi(t + 1)
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Pseudocode for PSO

K‑means clustering algorithm
The k-means clustering algorithm is a hard computing or crisp clustering technique, 
widely used in pattern recognition and data analysis [25]. It was first introduced by Mac-
Queen in 1967. Unlike soft computing clustering techniques such as the fuzzy c-means 
(FCM) algorithm, which allows each data point to belong to multiple clusters with vary-
ing degrees of membership, the k-means algorithm assigns each data point to exactly 
one cluster.

Given a set of d-dimensional data points, the objective function for the k-means algo-
rithm is to minimize the sum of squared distances (SSD), which is defined as the sum of 
the squared Euclidean distances between each data point and its assigned cluster centre. 
The algorithm follows an iterative process to find optimal cluster centres and assign data 
points to the nearest clusters. The steps involved in the k-means clustering algorithm are 
as follows.

Initialization Choose the number of clusters, k and randomly initialize k cluster 
centres.

Assignment Step For each data point xi, calculate the squared Euclidean distance 
to each cluster centre (Eq. 3) and assign the data point to the cluster with the nearest 
centre.

where d(p, q) = squared Euclidean distance between point p and centroid q . pi = ith 
dimension of point p. qi = ith dimension of centroid q. n = number of dimensions.

Update Step Recalculate the cluster centres by taking the mean of all data points 
assigned to each cluster.

(3)d(p, q) =

n
∑

i=1

(pi − qi)
2
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Iteration Repeat the assignment and update steps until convergence or a termi-
nation criterion is met. Convergence can be determined by checking if the cluster 
centres remain unchanged or if the objective function value falls below a certain 
threshold.

The termination criterion typically used is when the change in cluster centres or the 
SSD between iterations is below a predefined threshold. The k-means clustering algo-
rithm is computationally efficient and widely applicable for various clustering tasks. The 
process is summarized in the pseudocode below:

•	 Initialize the number of clusters ‘k’ and maximum number of iterations ‘MaxIt’.
•	 Randomly initialize the centroids for each cluster.

Repeat the following steps until convergence or maximum iterations reached:

•	 Assign each data point to the nearest centroid based on squared Euclidean distance
•	 Recalculate the centroids by taking the mean of all data points assigned to each cen-

troid.
•	 If the centroids have not changed significantly or the maximum iterations have been 

reached, exit the loop.
•	 Otherwise, go back to first step in this loop.

Return the final centroids and the cluster assignments for each data point.

Methodology
Testing benchmark functions and PSO parameters

Eighteen benchmark functions were used to evaluate the new PSO variant [26]. To test 
the algorithm’s ability to exploit the search space, unimodal functions (F1 to F6) were 
utilized. Multimodal functions (F7 to F12) were employed to assess diversity and explo-
ration. Noisy functions with Gaussian distribution noise (F13 to F16) were used to evalu-
ate adaptiveness and robustness. Finally, variable dimension functions (F17 & F18) were 
applied to test the scalability of the algorithm. These benchmark functions are stand-
ard benchmark functions for assessing the performance of optimization algorithms. A 
comparative analysis was performed involving the enhanced PSO, the original PSO [27], 
PSO-AWDV (which incorporates an adaptive weighted delay strategy) [12], PSOEA (a 
variant combining Evolutionary Algorithm with PSO) [28], and Genetic Algorithm (GA) 
[29]. Table 1 shows the equations for the functions, while Table 2 shows the other spe-
cific details of the functions:

The parameters used at the initialization phase of the PSO and comparison between 
the algorithms are shown in Table 3. Also, the random values used r1, r2 and r3 used in 
the velocity updating function were generated using the random generator in MATLAB.

All five algorithms were executed within a MATLAB R2021a environment on a con-
sistent computer setup: an Intel® Core™ i7-7500U with CPU running at 2.70  GHz to 
2.90  GHz and equipped with 12  GB RAM. The comparative analysis was conducted 
using the following parameters: Optimum Cost, Mean Absolute Error (MAE), and 
Standard Deviation (SD). The calculations for these parameters are as follows.
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S represents the total number of cost samples. Xoi corresponds to the benchmark 
value of the test function, while Xi denotes the computed optimum value.

(4)MAE =
1

S

S
∑

i=1

|Xoi − Xi|

Table 1  Function equations

No Function 
name

Equation

F1 Rotated 
hyper-ellip-
soid

f (x) =
d
∑

i=1

i
∑

j=1

x2j

F2 Zakharov
f (x) =

n
∑

i=1

x2i +

(

n
∑

i=1

0.5 · ixi

)2

+

(

n
∑

i=1

0.5 · ixi

)4

F3 Dixon-price
f (x) = (x1 − 1)2 +

n
∑

i=2

i ·
(

2x2i − xi−1

)2

F4 Sum of differ-
ent powers f (x) =

d
∑

i=1

|xi |
i+1

F5 Bohachevsky 
1

f (x) = x21 + 2x22 − 0.3 cos (3πx1)− 0.4cos(4πx2)+ 0.7

F6 Matyas f (x , y) = 0.26
(

x2 + y2
)

− 0.48xy

F7 Drop-wave 
function f (x) =

1+cos

(

12
√

x21+x22

)

0.5
(

x21+x22
)

+2

F8 Rastrigin
f (x) = 10n+

n
∑

i

(

x2i − 10 cos (2πxi)
)

F9 Ackley

f (x) = 20e

(

−0.2

√

1
n

n
∑

i=1

x2i

)

− e

(

1
n

n
∑

i=1

cos (2πxi)

)

+ 20+ e

F10 Levy
f (x) = sin2(πw1)+

n−1
∑

i=1

(wi − 1)2
[

1+ 10sin2(πwi + 1)
]

+ (wn − 1)2
[

1+ sin2(2πwn)
]

F11 Griewank
f (x) = 1+ 1

4000

n
∑

i=1

x2i −
n
∏

i=1

cos

(

xi√
i

)

F12 Styblinski-
Tang func-
tion

f (x) = 1
2

n
∑

i=1

(

x4i − 16x2i + 5xi
)

F13 Noisy sphere
f (x) =

n
∑

i=1

(xi + noise)2

F14 Noisy Ras-
trigin f (x) = 10n+

n
∑

i=1

(

(xi + noise)2 − 10 cos (2π(xi + noise))
)

F15 Noisy Ackley

f (x) = 20e

(

−0.2

√

1
n

n
∑

i=1

(xi+noise)2

)

− e

(

1
n

n
∑

i=1

cos (2π(xi+noise))

)

+ 20+ e

F16 Noisy Grie-
wank f (x) = 1

4000

n
∑

i=1

(xi + noise)2 −
n
∏

i=1

cos

(

xi+noise√
i

)

+ 1

F17 Rosenbrock
f (x) =

n
∑

i=1

[

100
(

xi+1 − x2i
)2

+ (xi − 1)2
]

F18 Powell’s sum 
function f (x) =

n
∑

i=1

|xi |
i+1
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µ is the mean of the total number of cost samples.

Proposed local best murmuration particle PSO variant
Rationale behind the proposed approach

The inspiration for the proposed variant comes from the natural phenomenon of 
bird murmuration. Birds move in coordinated patterns, maintaining a balance 
between individual movement and group dynamics by following a leader within their 

(5)SD =

√

∑

(Xi − µ)2

S

Table 2  Details of benchmark functions

No Function Search range optimal value Dimensions

1 Rotated hyper-ellipsoid [− 65.536, 65.536] 0 30

2 Zakharov [− 5, 10] 0 30

3 Dixon-price [− 10, 10] 0 30

4 Sum of different powers [− 1, 1] 0 30

5 Bohachevsky 1 [− 100, 100] 0 2

6 Matyas [− 10, 10] 0 2

7 Drop-wave function [− 5.12, 5.12] − 1 2

8 Rastrigin [− 5.12, 5.12] 0 2

9 Ackley [− 32.768, 32.768] 0 100

10 Levy [− 10, 10] 0 100

11 Griewank [− 600, 600] 0 100

12 Styblinski-Tang function [− 5, 5] − 3916.16599 100

13 Noisy Sphere [− 100, 400] 0 30

14 Noisy Rastrigin [5.12, 5.12] 0 30

15 Noisy Ackley [− 32, 32] 0 30

16 Noisy Griewank [− 600, 600] 0 30

17 Rosenbrock [− 5, 10] 0 Variable

18 Powell’s sum function [− 1, 1] 0 Variable

Table 3  PSO parameters

Parameter Value

Number of particles 150

Inertia weight (w1) 1

Inertia weight damping ratio(wdamp) 0.99

Personal learning coefficient (c1) 1.5

Global learning coefficient (c2) 2

Murmuration coefficient (c3) 1

Number of clusters (k) 5

Number of runs (cost samples) 50

Maximum iteration 1000
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vicinity. This behaviour allows the flock of birds to respond rapidly to changes in 
direction or threats, faster than if each bird moved on its own. Similarly, in the par-
ticle swarm optimization algorithm, particles (analogous to birds) can benefit from 
not only following their personal best (pbest) and the global best (gbest) but also by 
considering a local best leader within a subgroup or “murmuration cluster.”

Theoretical foundation

The original particle swarm optimization (PSO) algorithm relies on particles updating 
their velocity based on pbest and gbest. However, this approach can sometimes lead 
to slower convergence or getting trapped in local optima, especially in complex, high-
dimensional search spaces. By introducing a local best murmuration particle (Mbest) 
within each cluster, the proposed method enhances the exploration–exploitation bal-
ance, allowing particles to follow a more dynamic path towards the global optimum. This 
approach aligns with swarm intelligence principles, where the collective behaviour of 
decentralized systems leads to improved problem-solving capabilities.

Algorithmic design

The proposed variant modifies the velocity update function to incorporate three com-
ponents: personal best (pbest), global best (gbest), and local best murmuration (Mbest). 
The Mbest is determined using the k-means clustering technique, where particles are 
grouped into clusters, and the best-performing particle in each cluster is identified as 
the local leader. This clustering is performed at each iteration to adapt to the changing 
search space, ensuring that the Mbest is dynamically updated.

The modified velocity update function can be expressed as:

where

•	 Vi(t) is the velocity of particle i at time t.
•	 w is the inertia weight.
•	 c1, c2 and c3 are acceleration coefficients.
•	 r1, r2 and r3 are random numbers uniformly distributed between 0 and 1.
•	 Xi(t) is the position of particle i at time t.
•	 Pibest, Gbest and Mbest are the personal best, global best, and local best positions, 

respectively.

In Eq.  (6), the updating velocity function of each particle is proposed to move 
according to a new velocity update function. In this equation, the personal best, 
global best, and local murmuration best are determined to update the velocity of each 
particle before their positions are updated using Eq.  (7). The local best murmura-
tion particle is found using the k-means clustering technique to classify each particle 
into a cluster known in this work as the murmuration cluster and the best particle in 

(6)
Vi(t + 1) = wVi(t)+ r1c1(Pibest − Xi(t))+ r2c2(Gbest − Xi(t))+ r3c3(Mbest − Xi(t))

(7)Xi(t + 1) = Xi(t)+ Vi(t + 1)
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the cluster will be chosen as the local best murmuration particle. Thus, each particle 
in each murmuration cluster will move towards the global best using their personal 
best, their cluster local murmuration best particle, and the global best for the entire 
swarm. This modification is based on the idea that birds always move in murmuration 
by looking at a leader in its vicinity. As a result, the ‘ripple’ through a flock is three 
times faster than could be explained if the birds were just moving individually. Sci-
entists have shown several reasons why birds would always not fly alone but look at a 
cheerleader to move in murmurations. Birds murmur together for safety, and warmth 
among others. According to this contribution, a particle will not only look at its per-
sonal best position and the global best to move towards the global best position of 
the swarm but also consider a local murmuration’s best position in other to murmur 
together towards the global best position. The introduction of the Mbest compo-
nent is to achieve faster convergence and avoid premature convergence by enhancing 
the swarm’s ability to explore the search space more effectively. The dynamic clus-
tering ensures that particles adapt to local changes, reducing the likelihood of being 
trapped in suboptimal regions. Additionally, this approach maintains diversity within 
the swarm, as each cluster’s particles follow a different Mbest, contributing to a more 
robust search process. Compared to the original PSO, the proposed local best mur-
muration PSO variant is expected to perform better in complex, multimodal optimi-
zation problems. The clustering-based approach helps in maintaining a good balance 
between exploration and exploitation, which is often a challenge in conventional PSO 
algorithms. The flowchart of the proposed model is shown in figure below (Fig. 1).

1.	 Start: Start of the algorithm.
2.	 Enter the Objective Function and set PSO parameters: The objective function f(x) rep-

resents the problem to be optimized. This step defines the function and its param-
eters, which will be used to evaluate the fitness of each particle. Parameters for 
the particle swarm optimization (PSO) algorithm is also defined in this step. This 
includes defining the number of particles, the maximum number of iterations, inertia 
weight, cognitive and social coefficients, and any constraints on the decision vector.

3.	 Initialize particles, evaluate solutions and determine the gbest:

•	 Each particle’s position is initialized randomly within the feasible solution space.
•	 Each particle’s velocity is initialized randomly. This velocity dictates how a particle 

moves in the search space.
•	 Each particle’s initial position is evaluated using the objective function, determin-

ing their fitness. The particle with the best fitness is set as the initial global best 
(gbest).

4.	 Set Iteration Counter: Initialize the iteration counter to 1. This counter controls the 
number of times the main loop will run.

5.	 While iter <  = maxIter: This loop iterates as long as the iteration counter is less than 
or equal to the maximum number of iterations. Within this loop:

•	 Cluster particles and find best in each group: Use k-means clustering to group par-
ticles into ‘n’ clusters. This step helps identify diverse solutions within different 
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regions of the search space. For each cluster, identify the particle with the best fit-
ness value. These particles represent the best solutions found within each cluster.

•	 Update Velocities using modified velocity equation and update positions: Update 
each particle’s velocity using a modified PSO velocity update equation. This equa-
tion considers each particle’s personal best position, the best position in its clus-
ter, and the global best position. Update each particle’s position based on its new 
velocity.

•	 Apply Limits and evaluate solutions: Enforce position and velocity limits to be 
within the defined search space. Re-evaluate the fitness of each particle at its 
new position.

Fig. 1  Flowchart of proposed model
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•	 Update Pbest and Gbest: Update each particle’s personal best if its new position 
is better. Also, update the global best if the best particle in any cluster has a bet-
ter fitness than the current global best.

•	 Apply Weight Damping: Gradually decrease the inertia weight by multiplying 
damping factor with the current inertia weight.

•	 Increment Iteration Counter: Increase iter by 1 to continue to the next iteration.

6.	 End While Loop: While loop ends
7.	 Display Results: After completing the iterations, display the best solution found and 

its corresponding fitness value.

Results and discussion
Unimodal functions (F1 to F6)

Unimodal functions test the algorithm’s ability to exploit the search space effectively. 
PSOMbest achieved the optimal solution in 3 out of the 6 unimodal functions (F4, F5, 
and F6), outperforming PSO, which achieved optimal values in 2 functions, and PSO-
AWDV, PSOEA, and GA, which each achieved optimal solutions in 1, 2, and 1 function, 
respectively (see Table 4). PSOMbest also had the best optimal solution in all six func-
tions. This superior performance in unimodal functions indicates that the proposed var-
iant is highly effective at local search and convergence, thus addressing to some degree 
the issue of local entrapment.

Furthermore, in terms of MAE, PSOMbest recorded the lowest values in 3 of the 6 
functions, demonstrating its consistency and precision in finding the optimal solution. 
Additionally, PSOMbest exhibited better standard deviation (SD) values in 3 out of the 
6 unimodal functions, indicating less variability in the solutions across multiple runs 
(Table 5). This consistency further highlights the algorithm’s reliability in simpler land-
scapes where exploitation is crucial.

Multimodal functions (F7 to F12)
Multimodal functions present a greater challenge due to the presence of multiple local 
optima. From Table 6, PSOMbest achieved the best optimum values in all 6 multimodal 
functions. In comparison, PSO achieved the best results in 2 functions, PSO-AWDV in 

Table 4  Optimum values (Unimodal functions)

Bold values in each table is significant since it shows which algorithm is the best in each function

No Function Benchmark 
value

PSO PSO-AWDV PSOEA GA PSOMbest

1 Rotated hyper-
ellipsoid

0 4.0218E−98 6.06252 5.1859E−100 0.00180 6.603E−236

2 Zakharov 0 7.50504E−10 1.98923 1.90473E−09 1.28608 4.11752E−27
3 Dixon-price 0 0.66667 1.63586 0.66667 0.66671 0.18241
4 Sum of differ-

ent powers
0 1.9856E−171 2.6034E−18 3.1923E−171 1.63753E−17 0

5 Bohachevsky 1 0 0 0 0 0 0
6 Matyas 0 0 4.75199E−68 0 3.2249E−239 0
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Table 5  MAE and SD (unimodal functions)

Bold values in each table is significant since it shows which algorithm is the best in each function

No Function Algorithm MAE SD

1 Rotated hyper-ellipsoid PSO 4.296E−92 2.45705E−91

PSO-AWDV 76.98422 85.49406

PSOEA 3.89785E−92 1.88719E−91
GA 13.91806 30.9640

PSOMbest 2.93273E−08 2.07375E−07

2 Zakharov PSO 6.66621E−08 1.15117E−07

PSO-AWDV 3.75342 1.14183

PSOEA 6.79923E−08 1.43314E−07
GA 3.07840 1.45745

PSOMbest 2.31505E−06 1.18901E−05

3 Dixon-price PSO 0.66667 2.73792E−16

PSO-AWDV 7.93845 5.73753

PSOEA 0.66667 2.48253E−16
GA 0.85748 0.70548

PSOMbest 0.71922 0.90817

4 Sum of different powers PSO 5.1162E−145 3.6008E−144

PSO-AWDV 5.49909E−12 2.18341E−11

PSOEA 3.9635E−150 2.5084E−149

GA 3.50266E−11 1.34234E−10

PSOMbest 0 0
5 Bohachevsky 1 PSO 0 0

PSO-AWDV 0 0

PSOEA 0 0

GA 0 0

PSOMbest 0 0
6 Matyas PSO 0 0

PSO-AWDV 6.56244E−44 4.6403E−43

PSOEA 0 0

GA 2.03137E−18 1.06667E−17

PSOMbest 0 0

Table 6  Optimum values (Multimodal functions)

Bold values in each table is significant since it shows which algorithm is the best in each function

No Function Benchmark 
Value

PSO PSO-AWDV PSOEA GA PSOMbest

7 Drop-Wave 
Function

− 1 − 1 − 0.99999 − 1 − 1 − 1

8 Rastrigin 0 0 0 0 0 0
9 Ackley 0 1.15463E−14 0.00712 7.99361E−15 0.00059 4.44089E−15
10 Levy 0 2.175409076 8.27561 0.54385 2.86289 1.49976E−32
11 Griewank 0 3.96683E−13 10.34546028 3.6926E−13 26.97701 0
12 Styblinski-Tang 

function
− 3916.166 − 3421.831 − 3001.808 − 3407.695 − 3455.488 − 3916.166
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1, PSOEA in 2, and GA in 2 functions. This gives an indication that PSOMbest’s local 
best murmuration mechanism enhances its ability to escape local optima, leading to 
superior exploration capabilities.

Table 7  MAE and SD (Multimodal functions)

Bold values in each table is significant since it shows which algorithm is the best in each function

No Function Algorithm MAE SD

7 Drop-wave function PSO 0.02 0

PSO-AWDV 0.02014 0.00012

PSOEA 0.02 0
GA 0.02893 0.02474

PSOMbest 0.02255 0.01262

8 Rastrigin PSO 0 0

PSO-AWDV 0 0

PSOEA 0 0

GA 0 0

PSOMbest 0 0
9 Ackley PSO 2.08544E−14 6.80507E−15

PSO-AWDV 0.02165 0.01172

PSOEA 2.00018E−14 4.91493E−15
GA 0.00087 0.00012

PSOMbest 0.00727 0.05135

10 Levy PSO 10.71004 3.37357

PSO-AWDV 18.72230 5.40355

PSOEA 11.07623 4.11081

GA 3.83042 0.44650

PSOMbest 3.70392E−09 1.79588E−08
11 Griewank PSO 0.12136 0.18319

PSO-AWDV 19.94082 4.63812

PSOEA 0.09148 0.11219

GA 36.62218 5.94389

PSOMbest 5.29789E−11 2.15226E−10
12 Styblinski-Tang function PSO 660.20023 53.81486

PSO-AWDV 1114.70001 74.99359

PSOEA 642.65524 55.46988

GA 697.45748 80.36825

PSOMbest 10.24644 46.62574

Table 8  Optimum values (Noisy functions)

Bold values in each table is significant since it shows which algorithm is the best in each function

No Function Benchmark 
Value

PSO PSO-AWDV PSOEA GA PSOMbest

13 Noisy Sphere 0 0.0012633 1.54593591 0.00157898 0.01615 0.000593
14 Noisy Rastrigin 0 21.289979 30.1634412 20.44469693 2.559060 0.112073
15 Noisy Ackley 0 0.0308622 1.50390775 0.035410354 2.665462 0.020417
16 Noisy Griewank 0 7.55207E−05 0.55838062 0.00012165 1.72972 2.70531E−05
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Moreover, in terms of MAE, PSOMbest outperformed the other algorithms in 5 of 
the 6 multimodal functions, which further emphasizes its effectiveness in navigating 
complex landscapes. PSOMbest also demonstrated better SD values in 5 out of the 6 
multimodal functions (F8, F9, F10, F11, and F12) (see Table 7), which indicates a higher 
degree of consistency in finding the global optimum across multiple runs, reducing the 
risk of suboptimal convergence.

Table 9  MAE and SD (Noisy functions)

Bold values in each table is significant since it shows which algorithm is the best in each function

No Function Algorithm MAE SD

13 Noisy sphere PSO 0.00121559 0.001280966
PSO-AWDV 6.130958766 13.12464091

PSOEA 0.001373176 0.002050239

GA 3.336978416 10.93430651

PSOMbest 0.003408802 0.023208555

14 Noisy Rastrigin PSO 19.0844968 19.0844968

PSO-AWDV 19.10981999 19.10981999

PSOEA 17.26557704 17.26557704

GA 3.084261342 3.084261342

PSOMbest 0.252170126 0.252170126
15 Noisy Ackley PSO 0.428796032 1.462144248

PSO-AWDV 1.009873388 0.654539306

PSOEA 0.038415831 0.198708018

GA 1.553110144 0.718214117

PSOMbest 0.019118491 0.011711702
16 Noisy Griewank PSO 0.005105199 0.375443752

PSO-AWDV 0.417872321 0.167354619

PSOEA 0.005398832 0.012615807

GA 1.380169938 0.887211018

PSOMbest 0.07289616 0.013269013

Table 10  Optimum values (Variable dimension functions)

Bold values in each table is significant since it shows which algorithm is the best in each function

No Function Benchmark 
Value

PSO PSO-AWDV PSOEA GA PSOMbest

17 Rosenbrock (2) 0 0 6.22777E−24 0 8.56965E−19 0
Rosenbrock (30) 0.593594803 32.90125955 0.11054394 1.45339704 0
Rosenbrock (100) 126.9879929 3393.706633 71.6360264 604.1686149 0

18 Powell’s Sum Func-
tion (2)

0 0 5.19977E−18 0 9.88369E−11 0

Powell’s Sum Func-
tion (30)

18.96820774 30.37178684 8.15080702 26.5396838 0

Powell’s Sum Func-
tion (100)

81.50860794 908.6016601 91.2217011 95.98033087 0
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Noisy functions (F13 to F16)
Noisy functions, characterized by Gaussian distribution noise, evaluate the robustness 
and adaptiveness of algorithms. PSOMbest outperformed the competing algorithms by 
achieving the best results in all 4 noisy functions (see Table 8).

The MAE values further confirm PSOMbest’s superiority, as it achieved the lowest 
MAE in 3 of the 4 noisy functions, demonstrating its ability to effectively handle noisy 
environments. This attests to the robustness of the proposed variant. Additionally, 
PSOMbest exhibited the lowest SD in 3 noisy functions (F14, F15, F16), further indicat-
ing its consistent performance even when faced with noise, as well as its ability to main-
tain a stable search process across different runs (see Table 9).

Table 11  MAE and SD (Variable dimension functions)

Bold values in each table is significant since it shows which algorithm is the best in each function

No Function Algorithm MAE SD

17 Rosenbrock(2 dimensions) PSO 0 0

PSO-AWDV 8.59134E−11 9.519E−10

PSOEA 0 0

GA 0.000108437 0.000836554

PSOMbest 0 0
17 Rosenbrock (30 dimensions) PSO 13.04416821 24.57905489

PSO-AWDV 47.88386943 62.50468094

PSOEA 12.8030527 23.70867439

GA 0.970510359 0.520100848

PSOMbest 5.8795E−06 6.57347E−05
17 Rosenbrock (100 dimensions) PSO 63.53987079

PSO-AWDV 2551.497442 2983.610568

PSOEA 65.67604382 60.31844995

GA 366.677693 296.9643339

PSOMbest 32.30026951 49.41550314
18 Powell’s sum function (2 dimensions) PSO 0 0

PSO-AWDV 2.77658E−12 2.63792E−11

PSOEA 0 0

GA 0.000847392 0.004507696

PSOMbest 0 0
18 Powell’s sum function (30 dimensions) PSO 11.40941039 20.23738586

PSO-AWDV 25.36109884 30.91413765

PSOEA 7.876864475 3.324209896

GA 10.92232852 0.696991482
PSOMbest 0.489048421 2.986028171

18 Powell’s sum function (100 dimensions) PSO 42.37149273 29.5871517

PSO-AWDV 453.8217618 214.3659764

PSOEA 44.09560408 23.84112572

GA 542.0518502 5472.462358

PSOMbest 39.11061438 0.745742797
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Table 12  Worst values

No Function Algorithm Worst values

1 Rotated hyper-ellipsoid PSO 1.73539E−90

PSO-AWDV 378.5818023

PSOEA 1.33379E−90
GA 151.7558672

PSOMbest 1.46636E−06

2 Zakharov PSO 5.57142E−07

PSO-AWDV 6.108257572

PSOEA 9.66256E−07
GA 6.788905131

PSOMbest 8.09531E−05

3 Dixon-price PSO 0.666666667

PSO-AWDV 24.76677769

PSOEA 0.666666667

GA 4.413501022

PSOMbest 6.68136002

4 Sum of different powers PSO 2.5463E−143

PSO-AWDV 1.12244E−10

PSOEA 1.7744E−148

GA 8.94607E−10

PSOMbest 0
5 Bohachevsky 1 PSO 0

PSO-AWDV 0

PSOEA 0

GA 0

PSOMbest 0
6 Matyas PSO 0

PSO-AWDV 3.28119E−42

PSOEA 0

GA 7.05859E−17

PSOMbest 0
7 Drop-wave function PSO − 1

PSO-AWDV − 0.9993919

PSOEA − 1
GA − 0.9362453

PSOMbest − 0.9362453

8 Rastrigin PSO 0

PSO-AWDV 0

PSOEA 0

GA 0

PSOMbest 0
9 Ackley PSO 3.9968E−14

PSO-AWDV 0.058225798

PSOEA 3.9968E−14
GA 0.001114711

PSOMbest 0.363106893
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Table 12  (continued)

No Function Algorithm Worst values

10 Levy PSO 18.63381944

PSO-AWDV 38.17312859

PSOEA 19.54244632

GA 5.111238465

PSOMbest 9.07663E−08
11 Griewank PSO 0.793765033

PSO-AWDV 30.48733926

PSOEA 0.468569005

GA 50.76553979

PSOMbest 1.41017E−09
12 Styblinski-Tang function PSO − 3195.64389

PSO-AWDV − 2624.39726

PSOEA − 3153.23374

GA − 3067.8354

PSOMbest − 3680.43650
13 Noisy sphere PSO 0.099155026

PSO-AWDV 49.17726443

PSOEA 0.010186423

GA 44.63780751

PSOMbest 0.005507762
14 Noisy Rastrigin PSO 85.92131535

PSO-AWDV 69.87803908

PSOEA 69.66203281

GA 14.63966182

PSOMbest 2.299103273
15 Noisy Ackley PSO 3.724887065

PSO-AWDV 4.039111779

PSOEA 0.937067222

GA 5.063922483

PSOMbest 0.076904616
16 Noisy Griewank PSO 0.07289616

PSO-AWDV 1.290203231

PSOEA 0.051755699

GA 5.394507826

PSOMbest 0.046925553
17 Rosenbrock (2 dimensions) PSO 0

PSO-AWDV 4.25887E−09

PSOEA 0

GA 0.003385736

PSOMbest 0
17 Rosenbrock (30 dimensions) PSO 74.82296694

PSO-AWDV 314.860825

PSOEA 76.90164891

GA 3.637892802

PSOMbest 0.000293975



Page 18 of 32Twumasi et al. Journal of Electrical Systems and Inf Technol           (2024) 11:42 

Variable dimension functions (F17 & F18)
Variable dimension functions assess an algorithm’s scalability by testing it across 
different dimensional spaces. From Table  10, it can be seen that PSOMbest out-
performed the other algorithms in all selected dimensions (2, 30, and 100) for both 
functions F17 and F18. The ability of PSOMbest to scale effectively is evident in 
its superior performance in both low (2D) and high-dimensional (100D) settings. 
Specifically, PSOMbest achieved the best optimum values in both functions at all 
dimensional levels, surpassing PSO, PSO-AWDV, PSOEA, and GA, which exhibited 
diminished performance as dimensionality increased.

The MAE values further validate this (see Table 11), with PSOMbest achieving the 
lowest MAE in all dimensions, particularly in the high-dimensional cases where other 
algorithms struggled significantly. Moreover, PSOMbest maintained the lowest SD 
in both functions across all dimensions except F18 (30D), highlighting its consist-
ency and adaptability, especially in high-dimensional spaces where the search process 
becomes more complex.

Analysis of worst‑case performances
The worst values in Table 12 provide insight into the reliability of an algorithm, par-
ticularly in scenarios where it may fail to find optimal or near optimal solutions.

Analysing the table, PSOMbest consistently demonstrated lower worst-case values 
across most benchmark functions, indicating that even in the least favourable runs, 
it managed to avoid significantly poor solutions. The breakdown is as follows:

Table 12  (continued)

No Function Algorithm Worst values

17 Rosenbrock (100 dimensions) PSO 229.168419

PSO-AWDV 13,570.16771

PSOEA 313.5026471

GA 1685.645411

PSOMbest 137.0706187
18 Powell’s sum function (2 dimensions) PSO 0

PSO-AWDV 1.18448E−10

PSOEA 0

GA 0.017839829

PSOMbest 0
18 Powell’s sum function (30 dimensions) PSO 76.71101223

PSO-AWDV 146.907062

PSOEA 25.53414442

GA 29.35884125

PSOMbest 8.150807023
18 Powell’s sum function (100 dimensions) PSO 195.5733344

PSO-AWDV 1637.580727

PSOEA 148.9283369

GA 24,586.70819

PSOMbest 98.98273584

Bold values in each table is significant since it shows which algorithm is the best in each function
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•	 PSOMbest achieved the lowest worst values in 3 out of 6 unimodal functions (F4, 
F5, and F6). This indicates the competitive consistent performance of PSOMbest.

•	 PSOMbest achieved the lowest worst values compared to the other algorithms 
in 4 out of 6 multimodal functions (F8, F10, F11, and F12). This confirms 
PSOMbest’s ability to maintain exploration without falling into deep local min-
ima.

•	 PSOMbest achieved the lowest worst values in 3 out of 4 noisy functions (F13, 
F14, and F15), demonstrating its robustness in noisy environments where tradi-
tional PSO and GA struggled, leading to higher worst-case errors.

•	 PSOMbest achieved the lowest worst values in both variable dimension func-
tions (F17 and F18) across all dimensions, especially in high-dimensional spaces 
(100D), where the worst-case values of other algorithms escalated significantly, 
indicating their difficulties in maintaining consistent performance as the prob-
lem complexity increased.

The ability of PSOMbest to maintain lower worst-case values across these diverse 
functions highlights its reliability and robustness.

Computational time
Table 13 shows the average computational time the various algorithms used in evaluat-
ing all 18 functions per run.

Table  13 reveals that PSOMbest has a longer average computational time per run 
(150.29 s) compared to other algorithms like GA (67.74 s), PSO (84.52 s), PSO-AWDV 
(91.86 s), and PSOEA (93.32 s). While this might seem like a disadvantage at first glance, 
the increased time can be viewed as a necessary trade-off for the superior accuracy, 
robustness, and scalability that PSOMbest offers.

In practical scenarios, especially in critical applications where the quality of the solu-
tion is paramount, the slightly longer computational time is often justified. For example, 
in engineering design optimization or complex system simulations, achieving the best 
possible solution can significantly outweigh the cost of additional computation time. 
Moreover, with advancements in computational power and parallel processing, the dif-
ference in time becomes less significant.

Table 13  Computational time

Algorithm Average 
computational 
time per run

PSO 84.52 s

PSO-AWDV 91.86 s

PSOEA 93.32 s

GA 67.74 s

PSOMbest 150.29 s
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Convergence rate
Figures  2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 show 
the convergence curves of the algorithms on each function. It can be observed that 

Fig. 2  Convergence curves for rotated hyper-ellipsoid (F1)

Fig. 3  Convergence curves for Dixon-price (F2)
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PSOMbest consistently achieved superior convergence rates across all 18 functions, 
even in cases where all algorithms converged to optimum values (as shown in Figs. 6 and 
9). PSOMbest exhibited rapid convergence before the 50th iteration in functions where 

Fig. 4  Convergence curves for Zakharov (F3)

Fig. 5  Convergence curves for sum of different powers (F4)
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it attained optimum cost (functions F4, F5, F6, F7, F8, F11, F12, F17 & F18), except for 
F4, where convergence was achieved just after the 400th iteration. Functions F2, F9, 
and F10, PSOMbest also demonstrated convergence within the first 50 iterations. These 

Fig. 6  Convergence curves for Bohachevsky 1 (F5)

Fig. 7  Convergence curves for Matyas (F6)
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findings highlight the unique ability of PSOMbest to converge swiftly without compro-
mising accuracy.

Fig. 8  Convergence curves for dropwave (F7)

Fig. 9  Convergence curves for Rastrigin (F8)
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Fig. 10  Convergence curves for Ackley (F9)

Fig. 11  Convergence curves for levy (F10)
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Fig. 12  Convergence curves for Griewank (F11)

Fig. 13  Convergence curves for Styblinski-Tang (F12)
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Fig. 14  Convergence curves for noisy sphere (F13)

Fig. 15  Convergence curves for noisy Rastrigin (F14)
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Fig. 16  Convergence curves for noisy Ackley (F15)

Fig. 17  Convergence curves for noisy Griewank (F16)
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Fig. 18  Convergence curves for Rosenbrock (F17, 2D)

Fig. 19  Convergence curves for Rosenbrock (F17, 30D)
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Fig. 20  Convergence curves for Rosenbrock (F17, 100D)

Fig. 21  Convergence curves for Powell’s sum function (F18, 2D)
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Fig. 22  Convergence curves for Powell’s sum function (F18, 30D)

Fig. 23  Convergence curves for Rosenbrock (F18, 100D)
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Conclusion
An improvement to the traditional PSO called PSOMbest has been made, the proposed 
improvement modifies the updating velocity function of the PSO, and it uses a local best 
murmuration particle which is found using the k-means clustering technique. A com-
prehensive analysis of the proposed PSOMbest variant across 18 benchmark functions 
reveals its superiority in terms of both optimal performance and reliability compared 
to traditional PSO, PSO-AWDV, PSOEA, and GA. The proposed improvement demon-
strated superior exploration abilities by achieving the best optimum values in 15 out of 
18 functions, particularly in the multimodal functions, where it achieved the best opti-
mum value in all 6 cases. It also achieved the best worst-case values in 12 out of 18 func-
tions, especially in the variable-dimension functions, where other algorithms showed 
significant escalation, indicating the proposed improvement’s reliability and robustness. 
In terms of convergence, the proposed improvement exhibited the best convergence 
rate in all 18 functions. These findings highlight the impressive ability of the proposed 
improvement to converge swiftly without compromising accuracy. PSOMbest consist-
ently achieved the best or near-best optimum values, demonstrating superior exploita-
tion capabilities in unimodal functions, robust exploration in multimodal landscapes, 
adaptability in noisy environments, and scalability across varying dimensionalities. 
The statistical analysis, including MAE, SD, and worst-case values, further reinforces 
PSOMbest’s robustness and consistency. It exhibited the lowest MAE and SD in a major-
ity of the functions, alongside lower worst-case values, indicating its ability to deliver 
reliable performance across different optimization scenarios.
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