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Introduction
The era of industry 4.0 shows the rise of the scientific field (Artificial intelligence) as 
a promising technology widely applied in different industrial applications [1] (e.g. effi-
cient energy management systems (EEMS) [2], microgrid system [3]) Modeling and soft 
computing are highly interested in predicting the roll force and torque rolling. Roll force 
prediction plays a significant role in rolling schedule and optimization. Several methods 
have been devoted to predicting roll forces and torque through modeling and soft com-
puting. Some of these methods were based on traditional models, such as the numerical 
finite element method, and others were based on the optimized heuristic method.

The prosperous application of semi-supervised support vector machines has been 
used in many applications. Therefore, this paper had paid attention to the semi-super-
vised support vector machines to predict roll separating force.
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The main contribution in this paper is:

1.	 The development of a machine learning based algorithm that can predict accurately 
the roll force with few experiments in laboratory

2.	 The new algorithm outperforms the conventional regression models and also the 
mathematical model used for calculation of roll force

3.	 Saving the cost and the time deployed in laboratory and having results very close to 
the actual readings can certainly improve the industrial process

The main novelty of the paper is the prediction of roll separating force without 
deploying big efforts to carry results from the experiments in the laboratory. The 
semi-supervised support vector regression is a semi-supervised learning technique 
that requires very few input data records with labels. Most of the data records can be 
without labels to train the network. Input data labeled can be taken from one or two 
passes and the unlabeled data can complete the input from five or six passes. Once 
the model is trained, the output force of the following passes is predicted easily.

The organization of the rest of the paper is as follows: “Literature survey” section 
presents a brief on previous work related to the paper achievement “Methodology” 
section introduces the methodology. “Experimental results and discussion” section 
presents the experimental results and discusses them. “Conclusions and future work” 
section gives conclusions on work done in the paper and suggests future works.

Literature survey
Aghasafari et  al. [4] introduced a model based on an inverse analysis technique to 
obtain the flow curve of materials in a hot rolling finishing mill. The model has relied 
on the minimization function of the differences between the experimental and com-
puted values. The model can simultaneously determine more accurate flow stress and 
enhance the estimation of the interface friction factors.

Yang et al. [5] applied an artificial neural network model trained by data conducted 
from developed a finite element model. The finite element model has been developed 
and validated to predict the stock temperature, strain, strain rate, and stress profiles 
during the rolling process. Then, the finite element was used to build the training data 
for the development of the neural network (NN) models. Mahdi and Hosein [6] devel-
oped a neural network model to a hot strip mill to enhance the model’s prediction for 
rolling force and rolling torque as a function of different process factors. The neu-
ral network was trained and validated using many three-dimensional finite element 
simulations carried out for various sets of process parameters. Fei et al. [7] proposed 
a concept of enabling the computation of the material model factors via a direct way 
from the rolling process on an industrial scale using an artificial neural network.

The main difficulty in the usage of the finite element model to produce the data 
needed to train the artificial neural network is the large amount of data needed as 
input for the construction of the mesh and those data are mainly acquired from 
exhaustive experiments in the labs, also the output may vary with large differences 
according to this input data.
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Liu et  al. [8] proposed a roll force prediction method based on genetic algorithm 
(GA), particle swarm optimization algorithm (PSO), and multiple hidden layer 
extreme learning machine (MELM). In the method proposed, GA is used for the 
search of the optimal number of hidden layers and nodes, and PSO is used to deter-
mine the best input weights and biases. One disadvantage to this model is that it 
depends on completely supervised learning and labeling the input data for training 
needs always big efforts, cost and time in labs’ experiments. Hwang et  al. [9] sug-
gested a hybrid model based on mathematical and artificial neural network for pre-
diction of rolling force and temperature in hot rolling processes. They trained their 
new model by collecting previous history data (e.g. 6–12 months ago). A drawback to 
this method is the need to wait for months to collect data which is not always realistic 
for industry.

In [10], an ensemble system was used to merge a number of machine learning tech-
niques and average them to produce one final predictive model where the k-cross valida-
tion was carried out to validate the results and enhance the model. The R-squared value 
of the machine learning model was over 0.98, while for calculation using Sims theory 
it was 0.922. This research work lacks the existence of the different shapes of roll force 
operations (e.g. round, oval, etc.)

In [11], a new online model using the gradient boosting decision tree (GBDT) method 
was proposed to predict rolling force. The new online model improved the time perfor-
mance however the accuracy of prediction remains poor in comparison to the actual 
readings of roll force in labs.

Li et al. [12] proposed a novel mechanical properties interval prediction model based 
on the sparrow search algorithm as an optimization for the neural network learning 
model. Cases examined in the research were very few.

Our main objective in this research is to develop a model independent from the finite 
element model and its disadvantages by introducing a method based on semi-supervised 
learning instead of completely supervised learning. In this method, very few experi-
ments are needed to label a part of the data and not all the data. We also prove that the 
new method gives better accuracy in predicting roll force.

Semi-supervised learning is a technique widely used in machine learning that merges 
a small number of labeled data and a large number of unlabeled data to form the training 
dataset. Semi-supervised learning is between the unsupervised learning and the super-
vised learning. The heuristic technique of self-labeling is considered as the oldest model 
of the semi-supervised learning [13].

The examples of applications started in the 1960s [14]. Vladimir Vapnik 1970s intro-
duced a transductive learning framework [15]. Nearly correct learning model for semi-
supervised learning of a Gaussian mixture was introduced by Ratsaby and Venkatesh in 
1995 [16]. Several classical methods are used in semi-supervised learning, such as the 
self-training method [17, 18], expectation-maximization method, multi-view method 
[19], graph-based method. Dópido et al. [17] developed a new approach for semi-super-
vised learning that adapts available active learning methods to a self-learning framework 
for applying hyperspectral image classification. Yuanqing Li et al. [18] made the analysis 
of the convergence of a semi-supervised support vector machine algorithm for the clas-
sification in small training dataset.
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Adankon and Cheriet [19] suggested a genetic algorithm to improve the objective 
function of the semi-supervised learning support vector machine. This algorithm was 
applied to applications of brain-computer interface. Shipeng et  al. [20] proposed an 
improved method for co-training, which is a novel co-training kernel for Gaussian pro-
cess classifiers. Ahmet et  al. [21] employed a transductive label propagation method 
based on manifold assumption to predict the entire dataset generates pseudo-labels for 
the unlabeled data and train a deep neural network.

Methodology
Genetic algorithms (GAs)

GAs are stochastic search techniques that can search spaces using ideas from the natural 
evolutionary principle [22, 23]. The idea of this method was first proposed by Holland 
[24]. A genetic algorithm works with a population of chromosomes, each identifying a 
possible solution to the problem tackled. Each chromosome is assigned a fitness value 
given the fitness function. Chromosomes with high fit are given more chances to repro-
duce, and the offspring take features from their parents. The GA is a simple tool for 
searching the global solution to an optimization problem. It is widely used for large-scale 
and complex nonlinear optimization problems [25].

The procedure of a GA can be summarized as follows:

1.	 Initialize a randomly generated population.
2.	 Compute the fitness of each chromosome in the population.
3.	 Do the offspring by genetic operators: selection, crossover, and mutation.
4.	 Check the stopping criteria. If the stopping criteria are met, the genetic algorithm 

should be stopped. Otherwise, repeat steps 2–4 using the generated offspring.

There are two types of coding methods for GAs. They are real and binary-coded GAs. 
Here, we adopt the binary-coded GA

Semi supervised‑support vector regression

Support Vector Machines (SVM) is a robust machine learning technique introduced 
for Supervised Learning [26] and classification problems. Suppose a training set 
Ld =

{(

x1, y1
)

, . . . ,
(

xn, yn
)}

 with xi ∈ Rd , i = 1, . . . , n and yi ∈ {1,−1}n , the problem of 
Support Vector Regression (SVR) is defined by Bennett and Demiriz in [27]as follows:

s.t. yi(wxi + b)+ ξi ≥ 1, ξi ≥ 0, where C > 0 is the error parameter and ξi ≥ 0 is an 
added variable to every point, in a manner that ξi ≥ 1 if the point is classified wrong, b is 
a scalar and w is an n-vector such that:

where l is the number of labeled samples.

(1)min
w,b,ε

(

1

2
w2 + C

n
∑

i=1

ξi

)

(2)y1[w.xi − b] ≥ 1, i = 1, . . . , l



Page 5 of 14Rashwan et al. Journal of Electrical Systems and Inf Technol           (2024) 11:44 	

For the semi-supervised approach, suppose a set of l  labeled samples 
Ld =

{(

x1, y1
)

, . . . ,
(

xl , yl
)}

 and a set of u unlabeled samples UD =
{

xl+1, . . . , xl+u

}

 
where xi ∈ Rn, i = 1, . . . , l + u  and yi ∈ R , the problem of SS-SVR is as follows [28]:

s.t. yi(wxi + b)+ ηi ≥ 1, ηi ≥ 0, i = 1, . . . ., l

where C > 0 is an error parameter, ηi is a slack term added for each point such that if the 
point is misclassified ηi ≥ 1.

Figure 1 shows the semi-supervised regression general framework

(3)min
w,b,ξ ,η,z

C





l
�

i=1

ηi +

l+u
�

j=l+!

min
�

ξj , zj
�



+ w

wxi − b+ ξj ≥ 1, ξj ≥ 0, j = l + 1, . . . ., l + u

−(wxi − b)+ zj ≥ 1, zj ≥ 0

Fig. 1  The SSR general framework
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BGA‑based optimization of the SS‑SVR model

The SS-SVR generalization estimation accuracy depends on the correct setting of 
the hyperparameter (C). However, no general guidelines are available to select this 
parameter. Therefore, we adopted a binary genetic algorithm (BGA) to search for 
the optimal parameters of SS-SVR to improve the prediction. In the proposed BGA–
SSSVR model, the parameter C is encoded with binary data; the values of the SS-SVR 
parameter are optimized using the BGA evolutionary process to estimate the wanted 
parameter to construct an optimized SVR model.

Figure 2 shows the framework for optimizing the SS-SVR parameters with a binary 
genetic algorithm, summarized as follows.
Step 1—Binary Coding of C to generate the chromosome randomly. Here, the range 

of C is defined as [100, 2000], the value of ξ is set to 1, and the value of η is set to 
0.001.

The population size is 100.

Initial value of C

Evaluate Fitness

Train SS-SVR model

Generate initial 

parameter population of 

chromosomes randomly

Binary Coding of C

Check stopping 

criteria

Data Set

YES

NO

Fig. 2  The BGA-SSSVR model



Page 7 of 14Rashwan et al. Journal of Electrical Systems and Inf Technol           (2024) 11:44 	

Step 2—Fitness definition of the training data set as maximum determination coeffi-
cient R-squared
Step 3—Running the Genetic algorithm operations as a standard roulette wheel 

operates to select excellent chromosomes to reproduce. Single-point crossover is used 
between two chromosomes. The probability of generating new chromosomes is 0.9. 
Then, the mutation operation probability is set to 0.05.
Step 4—If the new population does not meet the stopping criterion, steps 3–4 are 

repeated until C satisfies the maximum determination coefficient R-squared. The best C 
would be given based on the optimum fitness function value.

where the sum of squares  is the sum of the difference between the data and the mean 
all squared and the residuals are the absolute subtraction of the actual value from the 
predicted value

In our work, the BGA-SSSVR was run five runs to get the mean value of the output C 
and the mean values of the predicted roll forces. We used the standard parameter set-
tings for the GA. The genetic algorithm is a stochastic algorithm, i.e., Each run gives dif-
ferent results and we can calculate the mean of the results in different runs.

The design of roll force prediction model based on BGA‑SSSVR

For any Machine Learning (ML) model, the input parameters’ design is critical for the 
accuracy of its output results. To get an accurately predicted roll force, the input param-
eters to the BGA-SSSVR model are set to the parameters that determine the roll force 
for a particular steel grade which are:

1.	 Initial thickness (mm)
2.	 Reduction in thickness (%)
3.	 Rolling Speed (rpm)
4.	 Initial temperature (°C)
5.	 Friction Coefficient µ

While the output is the predicted roll force (N)
Figure 3 shows the roll force prediction model based on BGA-SSSVR

Experimental results and discussion
Data set

In [29], the authors validated a model for predicting roll force during rebar steel pro-
cessing. The readings from the rolling field industry were used as input for the model to 
check the accuracy of the model calculations. The steel section varies from pass to pass 
in the rolling process, i.e., round-oval-round. Measured flow stresses were bigger than 
those calculated by the model in range of 30–40 MPa. The difference between the meas-
ured roll forces values and calculated values is noticeably high.

In this paper, we use data of the first six passes to train our machine learning proposed 
model and the data of the following passes from the 7th pass to the 21st pass for the test-
ing phase.

(3)R2 = 1− (sum of the residuals squared/sum of squares)
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Tables 1 and 3 show the input parameters to the BGA-SSSVR for the Oval and Round 
shape respectively.

In machine learning, we stop to acquire data for training when we want to avoid over-
fitting. One way to avoid overfitting is to apply the cross-validation method, in which 
the data being used for training the model is divided into folds and the model is done for 
every fold. Then, the overall error is averaged. However, our data acquired from experi-
ments are always too few to cause the overfitting problem

Quality metrics

As quality metrics, we use two quality metrics: the mean absolute error (MAE) and the 
root mean square error (RMSE)

The mean absolute error is defined as follows:

And the root-mean-square error is defined as follows:

(4)MAE =

∑N
i=1

∣

∣AF− PF
∣

∣

N

(5)RMSE =

√

∑N
i=1 (AF− PF)2

N

Fig. 3  The design of the Roll Force Prediction model

Table 1  The input parameters to the BGA-SSSVR for the Oval shape

Initial 
thickness 
(mm)

Final 
thickness 
(mm)

Reduction in 
thickness %

Temperature °C Roll speed m/s Friction 
coefficient

99.0 74.0 0.250 1000 9.5 0.55

84.0 57.0 0.270 982 15.6 0.56

65.5 43.0 0.225 946 30.8 0.57

51.2 33.5 0.177 945 51.0 0.57

40.0 25.0 0.150 938 80.6 0.57

31.2 19.0 0.122 959 170.8 0.56

24.4 14.0 0.104 966 217.3 0.55

19.0 13.0 0.060 1015 279.5 0.54
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where AF is the actual force, PF is the predicted force, and N  is the number of observed 
passes.

Comparison criteria

We propose the following set of criteria to be used to evaluate the performance of 
machine learning to predict the roll force in a fourth industry generation:

•	 Two shapes will be studied: oval and round
•	 Three values will be compared for each sample: actual measured—calculated through 

the mathematical model—predicted using the proposed ML model
•	 The standard description of management data
•	 Three quality measures: RMSE—MAE-MAPE

Experimental setup

All implementations performed in this paper were using Python 3.8. The size of the 
training set was 105 records; only 15 records were labeled data. The size of the testing set 
was eight records for oval shape and seven records for round shape. The key parameters 
for the genetic algorithms are: bounds of penalty parameter C = [100, 2000], number of 
bits = 20, number of iterations = 100, number of population = 100, rate of crossover 
= 0.9, rate of mutation = 0.05. Tables 1 and 3 show the input parameters to the BGA-
SSSVR for the oval and round shapes, respectively

Results and discussion
As mentioned in “The design of roll force prediction model based on BGA-SSSVR” sec-
tion, the proposed BGA-SSSVR model has five input parameters: initial thickness, the 
percentage reduction in thickness, rolling speed, initial temperature, and friction coef-
ficient µ . It gives one output which is the predicted force. The experiment applies an oval 
shape manufacturing process and compares the three forces. Table 2 shows the obtained 
predicted force (PF) compared to the actual (MF) and the mathematically calculated 
ones in eight different observed passes. From this table, it could be shown that the PF 
approaches the MF in passes 2 to 8.

Table 2  Comparison between the measured (actual), calculated, predicted roll force in Newton for 
the Oval Shape

Measured roll force (N) Calculated roll force (N) Predicted roll force (N)

1,374,892.33 1,388,910 1,193,222.99

1,237,599.23 922,260 1,197,070.21

982,626.33 632,770 1,033,563.45

790,415.99 390,320 857,032.61

705,098.14 261,980 744,040.46

460,912.55 147,580 606,761.78

421,685.95 98,140 516,182.61

202,016.99 47,350 348,456.49
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The same conclusion could be deduced from Fig. 4. The fitness function for the oval 
shape R2=0.9192 and the best value of C was found to be 1738.58. The mean absolute 
error (MAE) is 289,246.61 between the measured force and the calculated force, while 
its value equals 95,684.98 between the measured force and the predicted force. This 
means that the percentage of reduction reaches 66.9%. The root mean square error 
(RMSE) is 317,262.98 between the measured force and the calculated force, while its 
value equals 108,881.5 between the measured force and the predicted force, leading 
to a reduction of 65.7%. Also, in case of oval shape, the mean absolute percentage 
error (MAPE) is 49.6045 between the measured force and the calculated force, while 
its value equals 20.27056 between the measured force and the predicted force leading 
to a reduction in error of 59.14%. The reduction in RMSE and MAPE is above the 50% 
which means that the new method succeeded in reducing error resulted from predic-
tion of roll force using the mathematical model by a great proportion in case of oval 
shape (Table 3).

Moving to the round shape manufacturing process, Table 4 shows the obtained pre-
dicted force (PF) compared to the actual (MF) and the mathematically calculated 
ones in seven different observed passes. From this table, it could be shown that the PF 

Fig. 4  Comparison between the measured (actual), calculated, predicted roll force in Newton for the Oval 
Shape

Table 3  The input parameters to the BGA-SSSVR for the Round shape

Initial 
thickness 
(mm)

Final 
thickness 
(mm)

Reduction in 
thickness %

Temperature °C Roll speed m/s Friction 
coefficient

113 84.0 0.290 994 12.3 0.56

92 65.5 0.265 981 19.7 0.58

74 51.2 0.228 951 39.2 0.58

59 40.0 0.190 954 62.9 0.58

48 31.2 0.168 954 101.6 0.57

39 24.4 0.146 978 217.3 0.57

33 19.0 0.140 997 355.2 0.54
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approaches the MF in all passes, as well. The same conclusion could be deduced from 
Fig. 5.

From Fig. 5, it could be observed that both the calculated and the predicted values do 
not show the same behavior moving from one pass to the other, i.e., sometimes are lower 
than the measured value (pass 3 to 7) and in other case are higher than the measured 
values. However, we can see that the predicted values are always very close to the meas-
ured (actual) values. This enforces the need to predict using machine learning methods 
rather than calculate the force by the model given in [29].

The fitness function for the round shape R2=0.7937, and the best value of C was 
888.37. The mean absolute error (MAE) is 147,594.12 between the measured force and 
the calculated force, while its value equals 100,223.64 between the measured force and 
the predicted force. This means a percentage reduction of 32.1%. The root mean square 
error (RMSE) is 167,557.94 between the measured force and the calculated force, while 
its value equals 109711.2 between the measured force and the predicted force, giving 
a percentage reduction of 34.5%. Also, in case of round shape, the mean absolute per-
centage error (MAPE) is 32.76025 between the measured force and the calculated force, 
while its value equals 26.18651 between the measured force and the predicted force 

Table 4  Comparison between the measured (actual), calculated, predicted roll force in Newton for 
the Round Shape

Measured roll force (N) Calculated roll force (N) Predicted 
roll force (N)

920,844.44 1,242,250 781,931.83

809,048.63 918,540 722,620.63

618,799.62 557,570 646,099.24

498,177.82 395,020 564,025.98

420,705.29 251,010 502,339.42

269,682.88 167,940 432,854.73

230,456.28 64,020 368,727.36

Fig. 5  Comparison between the measured (actual), calculated, predicted roll force in Newton for the round 
Shape
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leading to a reduction in error of 20.07%. The reduction in RMSE and MAPE is above 
the 20% which means that the new method succeeded in reducing error resulted from 
prediction of roll force using the mathematical model by a good proportion in case of 
round shape.

To better evaluate the machine learning model for prediction of roll force, the k-fold 
cross validation evaluation method was used in both cases oval shape and round shape. 
For the oval shape, the 3-fold cross validation produces a root mean square error (RMSE) 
of value 360.66 while when k equals 5, the RMSE was decreased to 342.86. For the round 
shape, the 3-fold cross validation gives an RMSE equals 375.71, while the 5-fold cross 
validation gives a reduction in value of RMSE 373.73. The results of the usage of the 
k-fold cross validation as an evaluation method shows that the assignment of k to be 5 
is better than 3 and that the error is found to be less in the case of oval shape than that 
of round shape. In general, the new machine learning model suggested in this paper to 
predict roll force succeeded in improving the prediction’s accuracy using small efforts in 
data acquisition.

In order to prove the efficiency of the new BGA-SSSVR in predicting the roll force, a 
comparison between the new approach and four conventional regression models (Lin-
ear Regression, Random Forest Regression, Support Vector Regression and Decision 
Tree regression) was established in addition to the comparison made between the BGA-
SSSVR and the calculation model presented in [21]. Tables 5 and 6 show these compari-
sons for the oval and the round shapes, respectively.

Conclusions and future work
Over the last decade, machine learning (ML) and especially deep learning (DL) have 
started to empower applications within the industrial field. Many industrial areas indi-
cate ML is becoming one of the main components to upgrade traditional manufacturing 

Table 5  Comparison between BGA-SSSVR and other regression models for the oval shape

Model RMSE MAPE

Simple Linear Regression 861,719.7837 99.9994

Random Forest Regression 861,721.6685 99.9997

Support Vector Regression 861,722.5559 99.9999

Decision Tree Regression 861,721.9778 100.0001

Calculation Method 317,262.9836 49.6045

BGA-SSSVR 108,881.4525 20.2705

Table 6  Comparison between BGA-SSSVR and other regression models for the round shape

Model RMSE MAPE

Simple Linear Regression 589,878.1392 99.9768

Random Forest Regression 589,967.6759 99.9999

Support Vector Regression 589,968.5190 99.9999

Decision Tree Regression 589,968.2765 100.0001

Calculation Method 167,557.9371 32.7602

BGA-SSSVR 109,711.2049 26.1865
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to the Industry 4.0 level. This paper applies ML in the roll force prediction industrial 
process. Here, the mathematical models suffered from significant errors compared to 
actual measured data. A new approach to predict roll separating force using SSSVR was 
introduced, and GA was applied to optimize the parameters affecting the sensitivity of 
the SSSVR. Maximizing the R2 accuracy score has been considered as a fitness func-
tion for the GA. The proposed model was evaluated using the RMSE, the MAPE and the 
MAE, calculated between the actual measured force, the predicted force, and the calcu-
lated forces. Obtained results show the reduction in RMSE by 66.9% and 32.1% for oval 
and round shape passes, respectively. Moreover, the MAE has been reduced by 65.7% 
and 34.5% in shapes oval and round, respectively. Also, the results show the reduction 
MAPE by 59.14% and 20.07% for oval and round shape passes, respectively. The K-fold 
cross validation used for the evaluation of the new model had shown its efficiency in 
both shapes.

Experimental and simulation results showed that the predicted force values surpassed 
the mathematically calculated values when compared to the actually measured ones.

In sum, this method can be applied to different materials, form factors and similar pro-
cesses as long as we train the model by data given from passes belonging to the corre-
sponding process or material. By entering an initial input file about the first given passes 
to train the model, the new method will be able to predict the other passes accurately.

As future work, we suggest to introduce the notion of fuzzy logic in the machine learn-
ing model in order to acquire data inputs in the form of range of values which better 
describes data and hence yields to more accurate results
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