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Introduction
Wolf [1] first introduced PVT (photovoltaic/thermal) technology in 1976, to increase 
total solar efficiency and jointly produce thermal and electrical energy. Additionally, 
because some of the waste heat is eliminated, the working temperature of the PV cells 
is reduced and as a result increases their electrical efficiency. PVT modules of all types, 

Abstract 

The photovoltaic/thermal (PV/T) flat-panel technology has numerous advantages 
over PV modules and separately mounted solar thermal collectors regarding overall 
effectiveness and space-saving. Hybrid PV/T solar collectors’ thermal and electrical 
performance is influenced by design parameters like mass flow rate, tube diam-
eter, tube spacing, packing factor, and absorber conductivity. This paper focused 
on using several meta-heuristic optimization techniques, incorporating the follow-
ing: multiverse algorithm, dragonfly algorithm, sine–cosine algorithm, moth-flame 
algorithm, whale algorithm, particle swarm algorithm, ant-lion algorithm, grey wolf 
algorithm, and particle swarm optimization algorithm in PV/T collector optimal design 
according to maximum total efficiency obtained. The outcomes of the various algo-
rithms revealed that the maximum electrical efficiency of the PV/T collector ranged 
from 13.85 to 14.28%, while the maximum thermal efficiencies ranged from 41.41 
to 52.08% under standard test conditions (1000 W/m2 and 25 °C). The optimized values 
for the design parameters of the PV/T collector were as follows: the absorber conduc-
tivity was determined to be 356.6 W/m K, the packing factor was optimized to 0.7, 
the mass flow rate was set at 0.019 kg/s, the tube width was determined to be 0.035 m, 
and the tube spacing was optimized to 0.0524 m. The results indicated that the grey 
wolf optimizer (GWO) algorithm proved to be highly effective in optimizing the design 
parameters of PV/T collectors. Furthermore, the study examined the relationship 
between the temperature of PV modules and PV/T collectors by considering variations 
in mass flow rate, packing factor, and tube width at different solar radiation levels. The 
results confirmed that the PV/T collector temperature exhibited improvements com-
pared to the PV module temperature. As a result, this led to higher electrical efficiency 
and an overall increase in the total efficiency of the PV/T collector.
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such as heat pipe PVT modules, air PVT modules [2], water PVT modules [3, 4], and 
nanofluid PVT modules [5, 6], have been developed over many years [7]. However, the 
intermittent nature of solar irradiance still limits the performance of the aforementioned 
PVT systems. Additionally, the temperature impact causes a greater output thermal 
energy level (and, thus, a higher module temperature) result in a lower electrical effi-
ciency, so there is a conflict between that level and electrical efficiency [8]. There are 
two ways to identify each PV/T system’s optimal performance point: conducting sev-
eral experiments and utilizing sophisticated computer techniques. Nowadays, computer 
approaches direct us to quickly and correctly find the optimal solution for each complex 
system [9]. In an air PV/T system, Shahsavar et al.’s [10] study concentrated on a number 
of certain variables, such as the channel’s depth, length, and width as well as the output 
air temperature for system optimizing, and report the finest cases, based on NSGA.

Cao et al. [11] examined the cooling of a PV system using a nanofluid in a different 
investigation. They looked into the effects of three key changes in the mass flow rate, 
solar irradiation, as well as the nanofluid characteristics. The adaptive neuro-fuzzy infer-
ence system (ANFIS) was used to optimize the system, and the estimated procedure’s 
optimum electrical efficiency was calculated. In 2013, Karathanassis et al. [12] developed 
a novel optimization approach for particular usage in a micro-channel. Khaki et al. [13] 
employed the genetic algorithm to improve both the energy efficiency and exergy effi-
ciency of building integrated photovoltaic/thermal (BIPV/T) systems. Vera et al. [14] put 
up a mathematical model and made both experimental and mathematical predictions 
regarding the building integrated photovoltaic/thermal (BIPV/T) system’s efficiency. 
To determine the best selection criteria that would affect the system’s mechanism and 
overall performance, they used the GA. Air gap, collector length, aspect ratio, mass 
flow rate, collector count, and storage tank capacity were the factors that were exam-
ined. The use of GA in conjunction with optimization goals was the main focus of Singh 
et al. study [15]. Sohani et al. [16] performed a multi-objective optimization of a building 
integrated photovoltaic/thermal (BIPV/T) system using phase change material (PCM) 
in the context of Tehran’s weather conditions The optimization process incorporated 
energy efficiency, ecological impact, and economic factors to achieve a balanced out-
come. Therefore, 77.2 mm was determined to be the ideal PCM thickness for the test 
conditions. Additionally, the energy payback period of the system was determined to be 
3.3 years., and its annual CO2 emissions were 17.7% fewer than they were been in the 
basic case.

A PV/T arrangement was examined by Sarhaddi et al. [17]. They demonstrated a novel 
method for examining the design specifications of an average air PV/T system Moreo-
ver, electrical, thermal, and environmental aspects were considered in the total energy 
analysis of an air PV/T configuration. Their results demonstrated that the system under 
investigation had total energy, electrical, and thermal efficiency of around 45%, 10%, 
and 17.18%, respectively. In 2022, Sattar et al. [18] conducted the most recent study and 
created an analytical model for a solar module that was paired with airflow to provide 
cooling. The main parameters that were considered were mass flow rate, irradiation, 
temperature, and duct geometrical requirements. Additionally, the main optimization 
objective was to increase the electrical output power. A multi-objective multivariable 
optimization was used on the system to accomplish this goal [19].
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This paper focused on studying the parameters design (the mass flow rate of fluid (m.), 
tube spacing (W), tube diameter (D), absorber conductivity (Kabs), and packing factor (S)) 
effect on both electrical and thermal efficiencies of a PVT collector with different types of 
meta-heuristic algorithms: moth flame optimization (MFO), ant-lion optimization (ALO), 
dragonfly algorithm (DA), grey wolf optimization (GWO), particle swarm optimization 
(PSO), multiverse optimization (MVO), and genetic algorithm (GA). The algorithms for 
sine–cosine algorithm (SCA) and whale optimization (WOA) were selected and applied on 
multi-objective optimization problem to obtain the optimal solution of design parameters. 
The algorithms were built and validated using MATLAB software, comparing these algo-
rithms’ results to obtain the most accurate and useful result for collector designing. Finally, 
the effect of these parameters was studied as a feasibility study on the PVT collector per-
formance represented in thermal and electrical efficiencies and mean plate temperature. 
Moreover, the influence of air temperature as well as solar radiation regarding the average 
plate temperature and both efficiencies of the PV/T collectors was studied.

The paper structure is divided into the following parts: Part 2 introduces the detailed 
mathematical modeling of PV/T collector. Part 3 explains the problem formulation and 
the different used algorithms. Part 4 discusses the optimization algorithms used in this 
study. Part 5 displays and talks about the results obtained from each algorithm and a 
comparison of the temperatures of the hybrid PV/T collector and PV modules in differ-
ent environmental conditions. Finally, “Conclusions” Section presents the conclusions and 
recommendations.

Mathematical model
Here, a water PV/T system’s mathematical model was created using the energy balances of 
its many parts. Due to the system’s symmetrical geometry, differential elements with length 
(dx) as well as width (w) were used (Fig. 1).

The collector’s useful energy output is [21]:

(1)
Qu = S · APV/TFR[G(τα)eff − UL(Ti − Ta)]

+ (1− S)
[

APV/TFR
[

G(τα)eff − UL

(

Tpm − Ta

)]]

,

Fig. 1  PV/T system schematic view [20]
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where the area of PV/T collector is APV/T, the PV plate average temperature is Tpm, the 
ambient temperature is represented by Ta, the heat removal factor is given by FR, the 
solar irradiance is represented as G, Ti represents the water input temperature, S is the 
area of the PV/T module covered with the PV cell, and the total heat loss coefficient is 
given by UL. The heat removal factor is determined as follows [22]:

where Z is the solar energy absorbed, To is the temperature of the outlet water, Ti is tem-
perature of the inlet water, m· is the water flow rate, and Cp is the specific heat coefficient 
of water (constant pressure). The overall heat loss coefficient is [23]:

where Ue is the edge’s heat loss coefficient, the backside’s heat loss coefficient is Ub, and 
Ut is the front side’s total heat loss coefficient. The next equation can calculate the total 
efficiency, electrical efficiency, and thermal efficiency [22, 23]:

where Tcell is the PV cells ‘temperature, Ta,ref indicates the temperature under standard 
conditions (298.15 K), B indicates the PV temperature coefficient (0.0045), ηe,ref is the 
solar cell’s efficiency under STC, ηT indicate the total efficiency, the thermal efficiency is 
ηth, and ηelect indicates the total efficiency, and ηplant is the average efficiency of produc-
ing electrical power and is taken as 38%.

The study was performed in the city of Cairo (30.06° N, 31.23° E). The monthly solar 
radiation as well as air temperature of Cairo, Egypt, is indicated in Fig. 2. Table 1 illus-
trates the parameters of PV/T collector [23].

Problem formulation
Several valuable studies have been conducted to optimize PV/T collectors design param-
eters (the fluid flow rate (m·), tube space (W), absorber conductivity (Kabs), tube diameter 
(D), and packing factor (S) using various techniques. Certain studies revised the opti-
mization algorithms to improve PV/T collector performance and efficiency. This study 
enhanced the PV/T collectors’ effectiveness, with several optimization techniques (GA, 
PSO, GWO, ALO, MVO, DA, MFO, SCA, and WOA) for obtaining the desired optimal 
system design corresponding to the highest efficiency. Using optimization methods, the 
optimized operating parameters for PV/T collectors were found with high thermal and 
electrical efficiency as the objective. There are five factors in the desired PV/T collector, 
which are represented as:

(2)FR =
mCp

APV/TUL

[

1−

Z
Ul

− (To − Ta)

Z
UL

− (Ti − Ta)

]

,

(3)UL = Ut + Ub + Ue,

(4)ηth =
Qu

APV/T · G
,

(5)ηelect = ηe,ref
[

1− B
(

Tcell − Ta,ref

)]

,

(6)ηT = ηth +
ηelect

ηplant
,
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Fig. 2  Monthly environmental condition of Cairo a solar radiation b air temperature [24]

Table 1  Configuration parameters of PV/T collector

PV/T layers Parameters Units

PV/T collector Area 1.6 (m2)

Length 1.6 (m)

Width 1 (m)

Glazing Thickness 0.004 (m)

Thermal conductivity 0.9 (W/m K)

Emissivity 0.8

Transmissivity 0.92

Absorptivity 0.04

Thermal conductivity 84 (W/m K)

Absorptivity 0.95

Emissivity 0.88

Packing factor 1

Temperature coefficient 0.45 (%/K)

Absorber plate Thermal conductivity 360 (W/m K)

Thickness 0.07 (m)

Tube Tube diameter 0.01 (m)

No. of tubes 12

Tube spacing 0.0795 (m)

Mass flow rate 0.02 (kg/s)

Insulation Thickness 0.07 (m)

Thermal conductivity 0.033 (W/m. K)
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where x = (m·, D, W, Kabs, S).
The optimal values of xi were determined by maximizing the thermal and electrical 

efficiencies of the PV/T collector in which the objective function is given by:

The objective functions for maximizing the provided efficiencies are determined as 
follows:

As the provided objective function is minimized, the efficiencies will be maximized.

Optimization algorithms
Genetic algorithm

A GA is a popular and extensively utilized tuning technique based on natural selection 
and genetics. Furthermore, it is often employed as a baseline for assessing sophisticated 
algorithms. The Global Optimization Toolbox in MATLAB was used in this study for 
GA optimization. It is a versatile tool to find results rapidly and efficiently.

Particle swarm optimization

This algorithm is initiated by a swarm of particles (the initial population). Particles use 
precise formulas to search across the search region. Particles attend their finest-recog-
nized places after conducting the study in the field of search. Next, the ideal position is 
determined, and the particles control the movement of extra particles. The exploration 
of the field of search is repeated until a proper result is recognized. The swarm is fine-
tuned according to the equations below for each iteration [25]:

where I indicates the weighted inertia, positive constants are c1 and c2, n indicates num-
ber of particles, plus t indicates the iterations’ number, and r1 and r2 are two random 
variables that diverge within the interval 0 and 1. The particle’s finest location is pi, while 
its biggest particle is gi.

Grey wolf optimization algorithm

This algorithm is stimulated by means of the headship construction and shooting per-
formance of grey wolves (Canis Lupus) in their normal habitation. The headship con-
struction in the model simulation is separated into four wolf classifications: alpha, 

(7)xmin
i ≤ xi ≤ xmax

i ; i = 1, 2, 3, 4, 5

(8)f (x) = max















ηe,ref
�

1− B
�

Tcell − Ta,ref

��

Qu
APV

/T
G

ηth +
ηelect
ηplant

(9)f (x)min = min

(

1

f (x)

)

(10)vt+1
i = I ∗ vti + c1 ∗ r1 ∗

(

pti − xti
)

+ c2 ∗ r2 ∗
(

gti − xti
)

,

(11)xt+1
i = xti + vt+1

i , i = 1, 2, . . . , n
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delta, beta, and omega. The stages of shooting are as follows: looking for a target, 
rotating it, and attacking it [26]. The rightest result is observed in the alpha (α) that 
mathematically simulated the social hierarchy of wolves in GWO. Subsequently, the 
results indicate that beta (β) and delta (δ) are the second and third highest scores. 
Omega (ω) is expected for the outstanding probable results. The GWO algorithm’s 
optimization is guided by α and β; these wolves are followed by means of the ω wolves 
[27]. The next is a short-lived description of the mathematical model. The circling 
routine of the grey wolves is mathematically denoted by [28]:

The position vectors of the prey and grey wolves are represented by −→xp and �x , 
respectively. The current iteration is iter. Coefficient vectors �A and �B are estimated as 
follows [29]:

where −→r1 , and −→r2  are the random vectors with values between 0 and 1. Through the iter-
ations, the components of a are progressively lowered from 2 to 0. Grey wolf hunting is 
mathematically modeled as follows [29]:

Iteratively, α, β, and δ estimate the potential target location and update the distance. 
The best outcomes are then used to force the other agents to update their locations. 
Potential solutions often converge on prey if |A|< 1, or flee from prey if |A|> 1.

Ant‑lion optimization algorithm

This algorithm is built on the hunting machinery of ant-lions also includes a random 
way of walking exploration and haphazard agent selection. The six basic processes of 
the haphazard wandering of ants, catching in ant-lion pits, creating traps in ant-lions, 
sliding ants near ant-lions, gathering prey, and repairing traps are elitism. The elite 
ant-lion is selected from each iteration’s greatest ant-lion. Using a stochastic move-
ment, ants can readily detect the food location. The following equations mathemati-
cally express this phenomenon [30]:

(12)
−→
D =

∣

∣

∣

−→c.−→xp (iter)−
−−−→
x(iter)

∣

∣

∣
,

(13)�x(iter+ 1) = �xp(iter)− �A

(14)�A = 2�a−→r1 − �a,

(15)�C = 2−→r2 ,

(16)�D =
∣

∣

∣

−→
b1

−→
xa − �x

∣

∣

∣
,
−→
Dβ =

∣

∣

∣

−→
b2

−→
xβ − �x

∣

∣

∣
,
−→
Dδ =

∣

∣

−→c3
−→
xδ − �α

∣

∣,

(17)−→
x1 = −→

xa +
−→
A1

(−→
Da

)

,
−→
x2 = −→

xβ +
−→
A2

(−→
Dβ

)

,
−→
x3 = −→

xδ +
−→
A3

(−→
Dδ

)

,

(18)�x(iter+ 1) =
(−→
x1 +−→

x2 +−→
x3

)

/3,



Page 8 of 20Aggour et al. Journal of Electrical Systems and Inf Technol           (2024) 11:20 

where y (t) represents random ant walks, the variables n, t, and r (t) indicate the itera-
tions’ maximum number, random walk steps, as well as the function built as follows [30]:

where the symbol rand indicated a uniformly distributed random number in the range 0 
and 1[31].

Multiverse optimization algorithm

Concerning the multiverse theory, there was more than just one enormous bang, but 
also numerous big bangs occurred, each of which birthed a novel universe. It is con-
cluded that there are numerous other worlds besides the Earth. There is also a chance 
that these different universes will strike; Consequently, MVO draws inspiration for solv-
ing the optimization problem from the ideas behind worm holes, black holes, and white 
holes. This algorithm needs to track these optimization criteria [32].

1.	 The high inflation rate results in a lot of white holes.
2.	 Black holes are likely to exist if the rate of inflation is high.
3.	 If the pace of inflation in the universe is high, objects will be hurled into white holes.
4.	 If the rate of inflation of the universe is low, objects will be captured by black holes.
5.	 Objects can randomly go through wormholes to the best universe, regardless of the 

rate of inflation.

The following is the expression for the MVO algorithm’s basic mathematical model 
[33]:

where NI (Ui) indicates the normalized inflation rate of the ith universe, xjk indicates the 
jth object of the kth universe, a random number within 0 and 1 is r1, and xji is the jth 
object of the ith universe. The equation stated xji is [32]:

where TDR and WEP are coefficients, ub indicate the upper limit, lb indicate the lower 
bound, Xj indicate the jth parameter of the best universe discovered so far, as well as 
(r2, r3, and r4) are values randomly selected within 0 and 1. Adaptive factors like WEP 
and TDR are employed to create exploitation. WEP is used to improve exploitation near 
the greatest result found so far, and TDR is used to improve exploitation near the finest 
result found so far. The following are the WEP and TDR coefficient adaptive formulas 
[33]:

(19)y(t) =

[

0, cumsum(2r(t1)− 1), cumsum(2r(t2)− 1), . . .
cumsum(2r(tn)− 1)

]

,

(20)r(t) =

{

1 rand > 0.5
0 rand ≤ 0.5

,

(21)x
j
i =

{

x
j
k r1 < NI(Ui)

x
j
i r1 ≥ NI(Ui)

,

(22)x
j
i =







�

Xj + TDR×
�

ubj − lbj
�

× r4 + lbj
�

, r3 < 0.5
�

Xj − TDR×
�

ubj − lbj
�

× r4 + lbj
�

, r3 ≥ 0.5, r2 < Web,

X
j
i r2 ≥ WEP
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The smallest and greatest values are characterized by min and max, in turn; l indicates 
the current iteration, and L is the iterations’ maximum number. The exploitation factor is 
represented by p.

Dragonfly algorithm

This algorithm built on swarm intelligence established by Mirjalili at Griffith University in 
2016. It draws inspiration from the natural dragonfly’s static and dynamic behaviors [34]. 
Dragonflies’ dynamic swarming behavior generates a variety of solutions in DA, enhancing 
the algorithm’s exploration capabilities. The exploitation capacity of the algorithm is indi-
cated by the static swarm [35].

The separation’s mathematical model is computed as follows [34]:

where N indicates the neighboring individuals’ number, Xj indicates the jth neighboring 
individual position, and X indicates the current position. Alignment (A) is represented 
as [34]:

where Vj indicates the individual velocity of the jth neighbor. Cohesion (C) is computed 
as follows [33]:

A food source’s (F) attractiveness is ascertained by [34]:

The following determines how to divert an adversary (E) externally [35]:

in which the adversary position is denoted by X− and the food source position by X+.
The dragonfly’s position is updated in a search space and analysis based on its movement 

step vectors (ΔX) and position (X) vectors. Because DA’s step vector and PSO’s step vector 
are identical, the movement direction is indicated by DA’s step vector as [35]:

(23)WEP = min+l ×

(

(max−min)

L

)

,

(24)TDR =

(

1−
l 1
p

L
1
p

)

,

(25)Si = −

N
∑

j=1

X − Xj ,

(26)Ai =

∑N
j=1 Vj

N
,

(27)Ci =

∑N
j=1 Xj

N
− X

(28)Fi = X+ − X

(29)Ei = X− + X ,

(30)�Xt+1 =
(

nSi + aAi + dCi + fFi + eEi
)

+ r�Xt ,
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where the variables t, f, e, r, n, d, and A represent the number of iterations, food factor, 
enemy factor, weight of inertia, separation weight, cohesion weight, and alignment of the 
ith individual. Calculating the location vectors is done as [35]:

When there are no nearby alternatives, dragonflies adopt the Lévy flight walk to increase 
the randomness of their flight. As a result, updates the dragonfly’s position by [36]:

where the location vectors’ dimension is indicated by the letter d. With respect to [0, 1], 
r1 and r2 are random values, while βf is a constant (1.5) [35].

Moth‑flame optimization algorithm

The first step in MFO is the randomly generated building of moths across the solution 
space. Each moth’s fitness value, or position, is then calculated, and the ideal position is 
flame-tagged. The locations of the moths are then updated by a spiral movement function 
for achieving the well locations tagged by a flame, then, until the termination requirements 
are satisfied, updating the novel finest solitary locations and repeating the earlier steps 
(i.e., updating the moth positions and creating new positions) [37]. The MFO mathemati-
cal model consists of two parts: flames and moths. The real search agents that traverse the 
search space are moths, and the best sites for moths to be found that have been found so far 
are fires. [38]. The following equations explain the algorithm [37]:

where I denotes the current iteration, T and N denotes the maximum number of itera-
tions and the maximum number of flames. One can determine the distance, Di, between 
the jth moth (Mj) and the matching jth flame (Fj) by referring to [38]:

(31)Xt+1 = Xt +�Xt+1

(32)Xt+1 = Xt + Levy(d)× Xt ,

(33)Levy(x) = 0.01×
σdr1

|r2|
1
βf

,

(34)σd =







Ŵ
�

1+ βf
�

× sin
�

πβf
2

�

Ŵ

�

1+βf
2

�

× βf × 2

�

βf−1
2

�







1/βf

,

(35)Ŵ(x) = (x − 1),

(36)No. of flame = round

(

N − I ∗
N − I

T

)

,

(37)Di =
∣

∣Fj −Mj
∣

∣
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Sine–cosine algorithm

This algorithm [34] is motivated by sine and cosine functions. The technique searches the 
candidate solution space using a mathematical model to catch the optimized solution. In 
the search space, the particle positions are updated as [39]:

The updated position is Jt+1; r1, r2, and r3 are the random variables; and the desired 
location is Pi. Depending on if the random number is larger or smaller than 0.5, these 
two equations are employed accordingly. To identify the optimized solution, the particle 
variation in the search space is related to sine or cosine functions.

Whale optimization algorithm

A school of little fish moving close to the water surface is hunted by a humpback whale, 
according to Mirjalili and Lewis, who first created this algorithm in 2016. By reducing its 
circle, the whale creates bubbles, which can be referred to as 9-shaped routes [40]. This 
algorithm is split into two sections. The first step is exploration, which includes a ran-
dom approach to finding prey. The spiral bubble-net attack can be used to encircle prey 
in the second phase, also known as the exploitation phase [41].

If P < 5 where P indicates a random number within 0 and 1 and if 
∣

∣

∣

�A
∣

∣

∣< 1, use the encir-

cling prey approach to update the position [41]:

where 
−−−−−→
X(t + 1) represents the updated position, 

−−→
X(t) represents the best solution posi-

tion, �a is a random vector between 2 and 0 depending on the maximum iteration num-
ber consuming shrinking encircling, and �r denotes a random vector in between [0, 1].

If | �A |> 1, update the position by exploring the phase method that [42]:

where −−−→X rand is a random position vector.
If P > 1, position is updated by updating the spiral as [43]:

(38)Jt+1 = Jt + r1 · sin r2 · |r3p− Jt |

(39)Jt+1 = Jt + r1 · cos r2 · |r3p− Jt |

(40)
−−−−−→
X(t + 1) =

−−−→
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(

�A �D
)

(41)�A =
(

2�a�r
)

−
(

�a
)

,
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∣

∣

∣

(

2�r
−−−→
X∗(t)

)

−
−−→
X(t)

∣

∣

∣,

(43)−−−−−→
X(t + 1) =

−−−→
X rand −

(

�A �D
)

(44)�D =

∣

∣

∣

∣

2�r
−−−→
X rand −

−−−→
X∗(t)

∣

∣

∣

∣

(45)
−−−−−→
X(t + 1) =

(

�Debi cos 2π l
)−−→
X(t),



Page 12 of 20Aggour et al. Journal of Electrical Systems and Inf Technol           (2024) 11:20 

where L indicates a random value between − 1 and 1, and b characterizes the logarithmic 
spiral shape [41].

The flowchart introduces the steps of the previous algorithms and the explanation 
is shown in Fig. 3; the first step determines the optimization technique inputs param-
eters such as initial population, max iteration, boundary limit, and position after the 
calculation of PV/T parameters (m·, D, W, S, Kabs) and calculate the objective func-
tion thermal and electrical efficiencies, set the fitness value for each search agent 
and update these positions, at max. Iteration evaluates the solutions with respect to 
objective function. Table 2 illustrates the range of variation and input parameters for 
optimization algorithms and approaches.

(46)�D = (
−−−→
X∗(t)−

(−−→
X(t)

)

Start

Select the best
particle and
generation

Update the
particle velocity
and position

Evaluation fitness
function for Gwo

search agents ( , ,
and )
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search agents
location and
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function of ants and
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of corresponding
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with eq. 18.

Calculate each agent
objective function

and calculate the best
agent

Updat location of
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and Update boss
r1,r2,r3,and r4
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DAWOA MVO AL GWO PSO

Read optimization techniques parameters
inputs
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i=1
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End

Yes

i=i+1
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Fig. 3  Flow chart of proposed optimization algorithms for PV/T collector

Table 2  The range of variation and input parameters for optimization approaches

Parameters Variation range

Lower bound Upper bound

m· (Kg/s) 0.001 0.1

D (m) 0.001 0.1

W (m) 0.001 0.1

Kabs (W/m K) 100 500

S 0.7 1

Iteration No 100

Population No 500

Agents No 50
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Results and discussion
This paper optimized five dissimilar PV/T collector parameters which affect the 
PV/T collectors overall performance. The additional design parameters remained 
unchanged, while these five parameters were optimized. Several design criteria 
should be chosen to turn a PV module with a certain size and electrical qualities 
into a PV/T collector. A comparison of the optimization algorithms’ outcomes is dis-
played in Table 3. The primary design parameters are the fluid flow rate of fluid (m·), 
tube spacing (W), tube diameter (D), absorber conductivity (Kabs), and packing fac-
tor (S). A comparison was made of the thermal, electrical, and overall efficiency. It 
was observed that ALO, SCA, and WOA produced the best fluid flow rates that are 
0.025 kg/s, 0.028 kg/s, and 0.024kg/s, respectively, compared with those of other algo-
rithms, but the SCA had the least thermal and electrical efficiencies that are 46.89%, 
and 14.28% respectively, compared with those of ALO and WOA, ALO efficiencies 
are 52.08% and 14.28, WOA efficiencies are 51.75% and 14.26%. The best tube diam-
eter results were obtained from the PSO and MFO algorithms that is 0.01m; how-
ever, the MFO algorithm produced the best thermal and electrical efficiency that are 
52.04% and 14.28%, respectively. Moreover, ALO and WOA produced optimal tube 
spacings, which is 0.0869 m for ALO and 0.09 m for WOA, with convergent electrical 
and thermal efficiencies. The absorber conductivity of copper material was obtained 
from the SCA optimization with thermal efficiency of 46.89% and electrical efficiency 
of 14.13%, and the MVO algorithm produced aluminum as an absorber material with 
thermal efficiency is 51.99% and electrical efficiency is 14.28%. The MVO algorithm 
had the highest thermal and electrical efficiencies are 51.99% and 14.28%, respec-
tively, but copper is more cost-effective than aluminum. The optimal packing factor 
was obtained from the optimization results achieved using the GA, PSO, and SCA, 
which are 0.989, 1, and 0.9387, respectively. As shown, the GA algorithm had the 
worst thermal and electrical efficiencies are 41.41% and 13.85%. After the optimiza-
tion process, the DA algorithm offered a better thermal efficiency is 41.89%, compared 
with that of the GA algorithm; however, when DA’s performance was contrasted with 
other algorithms, it was worse. The PSO algorithm had a better tube diameter and 
optimized packing factor; however, it had low thermal and electrical efficiencies that 
are 42.44% and 13.93%, respectively. Although the SCA had good results for the flow 
rate, absorber conductivity, and packing factor, in addition, its thermal and electrical 

Table 3  PV/T design parameters based on different optimization techniques

Algorithm GA PSO GWO ALO MVO DA MFO SCA WOA

m· (Kg/s) 0.095 0.1 0.019 0.025 0.09 0.05 0.036 0.028 0.024

D (m) 0.058 0.01 0.035 0.038 0.073 0.083 0.01 0.0032 0.0258

W (m) 0.026 0.01 0.0524 0.0896 0.0593 0.054 0.031 0.0423 0.0999

Kabs (W/m k) 326 221 356.6 200.83 152.8 287.9 199.5 383.9 334.5

S 0.989 1 0.7 0.7 0.7016 0.7601 0.7 0.9387 0.7

ηth% 41.41 42.44 52.08 52.08 51.99 41.89 52.04 46.89 51.75

ηelec% 13.85 13.93 14.28 14.28 14.28 13.67 14.28 14.13 14.26

ηT% 77.85 79.09 89.65 89.65 89.56 77.86 89.61 84.07 89.27
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efficiency were poor when contrasted with other methods. With respect to the table, 
the electrical and thermal efficiencies of the WOA and MVO were approximately 
close, but the WOA values were better than the MVO values; however, they both did 
not have the optimal design for the PV/T collector. Finally, the MFO, ALO, and GWO 
algorithms had the optimized values for the both efficiencies, and the GWO algo-
rithm had the optimal values for the design parameters. Thus, the optimized PV/T 
design was obtained from the GWO algorithm.

After applying the resulting optimized parameters in the simulation for each opti-
mization algorithm, the figures of electrical and thermal efficiencies with reduced 
temperature were introduced. Figures 4, 5 and 6 show the comparison of each algo-
rithm’s thermal, electrical, and total efficiencies. GWO and ALO algorithms show the 
same and highest electrical and thermal efficiencies, but the GWO algorithm param-
eters were more effective than that of the ALO algorithm.
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Fig. 4  Variation in thermal efficiency of PV/T for all algorithms
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As shown from the results, the three algorithms GA with thermal efficiency of 41.41% 
and electrical efficiency 13.85%, PSO with thermal efficiency of 42.44% and electrical 
efficiency 13.39%, and DA with thermal efficiency of 41.89% and electrical efficiency 
13.67%, introduce the minimum thermal and electrical efficiency values. The DA and 
GA had the worst values for thermal and electrical efficiencies, although GA and PSO 
had the maximum and most effective packing factors that are 0.095 and 1, respectively.

The thermal efficiency of the MFO and MVO algorithms was good but lower than that 
of the GWO and ALO algorithms. In addition, the electrical efficiency of the MFO and 
MVO algorithms was high but not suitable, compared with that of the GWO algorithm. 
The WOA algorithm efficiencies curves were high and exhibited good results, but the 
optimized parameters are not the most valuable values. The SCA algorithm efficiencies 
values were not the worst or maximum values, compared with those of other algorithms, 
although it had a good packing factor. Unfortunately, the other SCA parameters were 
not the best values. Finally, the GWO algorithm recorded the best-optimized param-
eters with the optimized electrical and thermal efficiencies and good design parameters.

Tables 4, 5 and 6 introduce the effectiveness of the flow rate, packing factor, and tube 
spacing based on the thermal and electrical efficiencies of the PV/T collector concerning 
the change in solar radiation. The figures show a comparison of the IV curves of a stand-
alone PV and the IV curves of a PV/T collector concerning this effect at air temperature 
(25 °C). As shown in Table 4, it was observed that with an increase in radiation, the flow 
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Fig. 6  Total PV/T efficiency variation for all algorithms

Table 4  The electrical, thermal, and PV/T temperature with mass flow variation

m·(Kg/s) Rad = 500 W/m2

Tpv = 40 °C
Rad = 800 W/m2

Tpv = 49 °C
Rad = 1000 W/m2 
Tpv = 55 °C

ηth
(%)

ηelec
(%)

Tpm ηth
(%)

ηelec
(%)

Tpm ηth
(%)

ηelec
(%)

Tpm

0.01 35.35 14.01 39.62 37.35 13.56 46.26 38.01 13.27 50.68

0.02 37.36 14.10 38.27 39.47 13.72 43.99 40.17 13.46 47.79

0.03 38.06 14.14 37.80 40.21 13.77 43.19 40.92 13.53 46.78

0.04 38.42 14.15 37.56 40.59 13.80 42.79 41.31 13.56 46.27

0.05 38.64 14.16 37.42 40.82 13.82 42.54 41.54 13.59 45.96

0.06 38.78 14.17 37.32 40.97 13.83 42.08 41.70 13.60 45.75



Page 16 of 20Aggour et al. Journal of Electrical Systems and Inf Technol           (2024) 11:20 

rate also increased, resulting in higher thermal and electrical efficiencies. Table 5 shows 
that an increase in packing factor to radiation resulted in thermal efficiency decrease and 
an increase in electrical efficiency, but the tube spacing has a different effect on the flow 
rate and packing factor as it decreased the electrical and thermal efficiencies because of 
an increase in plate temperature. Table 6 shows the thermal, electrical, and PV/T tem-
perature with tube width variation.

Figures 7 and 8 show similar currents in the stand-alone PV module and PV/T col-
lector but a small change and an increase in voltage increased the flow rate and packing 
factor. For the stand-alone PV module, the packing factor and mass flow were less than 
those in the PV/T collector. Figure 9 denotes the matching currents in the stand-alone 
PV and PV/T collectors. However, an increase in voltage occurred in the PV/T collector 
and caused a decrease in tube spacing.

Table 7 shows the comparison of the present results of the optimization design with 
the reported results. For the GWO algorithm result (the best results obtained), Fuentes 
et al. [28] achieved approximately the same electrical and thermal efficiencies as those of 
the present efficiencies, but the total efficiency of the GWO algorithm was more effec-
tive. Compared with the other papers, the thermal, electrical, and total efficiencies of 
the GWO algorithm were better and more effective. Thus, the GWO algorithm had an 
excellent result, compared with those of the previous studies. By comparing our previous 
work [22] with the present study; the new algorithms overcome the lakes and disadvan-
tages such as; inefficiency in large-scale continuous situations; great accuracy requires 
proper parameter adjustment, random selection of seeds and positions, and increase 

Table 5  The electrical, thermal, and PV/T temperature with packing factor variation

S Rad = 500 W/m2

Tpv = 40 °C
Rad = 800 W/m2

Tpv = 49 °C
Rad = 1000 W/m2 Tpv = 55 °C

ηth
(%)

ηelec
(%)

Tpm ηth
(%)

ηelec
(%)

Tpm ηth
(%)

ηelec
(%)

Tpm

0.2 47.93 13.94 40.73 50.03 13.45 47.92 50.73 13.13 52.71

0.4 45.27 13.98 40.13 47.36 13.52 46.96 48.06 13.21 51.52

0.6 42.60 14.02 39.53 44.70 13.58 46.01 45.40 13.29 50.32

0.8 39.93 14.06 38.94 42.03 13.65 45.05 42.73 13.37 49.13

1 37.26 14.10 38.34 39.36 13.71 44.10 40.06 13.45 47.94

Table 6  The thermal, electrical, and PV/T temperature with tube width variation

W (m) Rad = 500 W/m2

Tpv = 40 °C
Rad = 800 W/m2

Tpv = 49 °C
Rad = 1000 W/m2

Tpv = 55 °C

ηth
(%)

ηelec
(%)

Tpm ηth
(%)

ηelec
(%)

Tpm ηth
(%)

ηelec
(%)

Tpm

0.01 43.7 14.15 37.6 45.93 13.80 42.78 46.67 13.57 46.24

0.02 43.10 14.12 38 45.30 13.75 43.46 46.03 13.51 47.10

0.03 42.52 14.10 38.4 44.68 13.71 44.12 45.40 13.45 47.93

0.04 41.95 14.07 38.78 44.08 13.67 44.76 44.79 13.40 48.73

0.05 41.39 14.04 39.15 43.50 13.62 45.38 44.20 13.34 49.54

0.06 40.86 14.02 39.51 42.93 13.58 45.99 43.63 13.29 50.31
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in complexity time, so the new algorithm achieved high and more accurate efficiency 
within low simulation time as shown in Table 7.

Conclusions
The design parameters for PV/T collectors that aim to produce the maximized thermal 
and electrical efficiency were presented in this study. The PV/T collector performance 
is built on numerous design factors that include the fluid flow rate (m·), tube diameter 
(D), spacing between tubes (W), absorber material (Kabs), and packing factor (S). With 
the aim of determining the ideal values for the design parameters, the PV/T collector 
performance was computed using meta-heuristic optimization techniques, including 
GA, PSO, GWO, ALO, MVO, DA, MFO, SCA, and WOA. The PV/T collector param-
eters were optimized with each optimization algorithm, and the obtained parameters 
were compared with each other, tested, and validated using MATLAB software. The 
results showed that the most effective optimization algorithms were GWO, ALO, and 
MFO because they produced the highest thermal and electrical efficiencies. The values 
of the parameters optimized with the GWO algorithm were the most effective and high-
est efficiencies; thus, they were considered the most suitable design parameters for PV/T 
collectors, the results that compared the efficiencies for each algorithm were intro-
duced and discussed. A study of mass flow rate, packing factor, and tube diameter effect 
with the variation of radiation on the thermal and electrical efficiencies was discussed. 
Another point also was introduced in this paper that from the electrical behavior as the 
comparison between stand-alone PV temperature and hybrid PV/T collector tempera-
ture, there is a good enhancement in IV curves of the hybrid PV/T collector over the 
IV curve of stand-alone PV module. In future, we will study the ability to use machine 
learning and artificial intelligence in PV/T system control and design.

Abbreviations
PV	� Photovoltaic module
GA	� Genetic algorithm
GWO	� Grey wolf algorithm
MVO	� Multiverse algorithm
MFO	� Moth-flame algorithm
WOA	� Whale algorithm
PV/T	� Photovoltaic/thermal collector
PSO	� Particle swarm algorithm
ALO	� Ant-lion algorithm
DA	� Dragonfly algorithm
SCA	� Sine–cosine algorithm

Table 7  Comparing PV/T efficiency with the previous works

Algorithm ηelec (%) ηth (%) ηT (%)

Proposed work 14.28% 52.8% 89.65%

Fuentes et al. [44] 16.1–19.1% 50–70.4% 66.1–89.5%

Fudholi et al. [45] 11.9–12.4% 41.1–48% 53.6–66.8%

Fudholi et al. [45] 12.2–12.7% 46.4–54.6% 58.4–66.8%

Zhang et al. [46] 9.5 50 59.5

Chow et al. [47] 11 51 62

Aggour et al. [22] 13.43% 35.61% 70.9%
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