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Abstract 

The Hunter–Prey Optimization Algorithm (HPO) is a nature-inspired optimization 
technique influenced by the predator–prey relationships observed in nature. Over 
the years, HPO has gained attention as a promising method for solving complex opti-
mization problems. This review article provides a comprehensive analysis and a bib-
liographic study of the Hunter–Prey Optimization Algorithm. It explores its origins, 
underlying principles, applications, strengths, weaknesses, and recent developments in 
detail. By delving into various facets of HPO, this review aims to shed light on its effec-
tiveness and potential, inspiring the researchers to address real-world optimization 
challenges.

Keywords:  Optimization techniques, Hunter–Prey Optimization, Improved Hunter–
Prey Optimization

Introduction
Low-emission technologies like distribution generation and electric vehicles have 
increased adoption in the distribution networks. These technologies are widely pro-
moted to meet the growing power demand and economic and environmental factors. 
Various control schemes have been embraced in the active distribution networks to 
overcome the drawback of power quality issues from these penetrations and determine 
the suitable site and size of penetration. Mathematical optimization is the observed and 
broadly implemented key technology in validating control scheme technologies. Opti-
mization has also been continuing in the limelight and is most focused on by research-
ers in various fields of engineering problems. Rapid depletion of existing sources and 
profit maximization could be the reasons for the same [1]. This work highlights the role 
of one such optimization algorithm, the Hunter–Prey Optimization Algorithm (HPO), 
in addressing the challenges posed by these low-emission technologies.

Background classification of optimization methods

The types of optimization are studied under four types, and some of the developed opti-
mization techniques to address the earlier discussed issues [2], Fig. 1 depicting the same, 
are as follows:

•	 Multi-objective optimization: This approach simultaneously considers two or 
more divergent objectives, such as power loss reduction and voltage stability 

*Correspondence:   
pappusoundarya.lahari@res.
christuniversity.in

1 Electrical and Electronics 
Engineering Department, School 
of Engineering and Technology, 
Christ Deemed to Be 
University, Kengeri Campus, 
Bangalore 560074, India

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43067-024-00144-2&domain=pdf
http://orcid.org/0000-0003-0873-241X
https://orcid.org/0000-0001-9716-5458


Page 2 of 27Lahari and Janamala ﻿Journal of Electrical Systems and Inf Technol           (2024) 11:19 

enhancement. Multi-objective optimization can yield a series of optimal solu-
tions that constitute a deal between the individual objectives, letting decision-
makers opt for the solution that aptly fits their needs.

•	 Hybrid optimization: This technique involves combinations of various meta-heu-
ristic algorithms to overcome individual deficiencies and improve the algorithm’s 
strength, convergence speed, and accuracy.

•	 Machine learning optimization: This technique is widely used for large-scale 
systems to extract data and predict a much more accurate optimal solution at a 
faster rate.

•	 Robust optimization: This technique considers the sensitivity of system param-
eters. It deals with uncertainties in the optimization problem like renewable 
energy introduction, sudden load demand, etc.

On the other hand, optimization methods can be broadly classified under the cat-
egories of classical optimization techniques, sensitive index methods, meta-heu-
ristic methods, and mixed techniques [2]. Classic optimization techniques involve 
the traditional methods of mathematics, namely Newton–Raphson (NR) [3], Linear 
Programming (LP) [4], Non-Linear Programming (NLP) [5], Mixed-Integer Pro-
gramming (MIP) [6], Mixed-Integer Linear Programming (MILP) [7], Mixed-Integer 
Non-Linear Programming (MINLP) [8, 9], Dynamic Programming (DP) [7].

Sensitive index methods involve the calculation of sensitivity index factors for 
optimization solutions. LFI (Loss Factor Index), PLI (Power Loss Index), LSI (Loss 
Sensitivity Index), and voltage indices like VSI (Voltage Stability Index) and AVDI 
(Average Voltage Deviation Index) are a few of them that aid in finding an optimiza-
tion solution considering the sensitivity parameters.

Mixed methods combine traditional mathematical and meta-heuristic methods 
with a sensitivity indices approach for a better solution than individual perfor-
mances. Hybrid works of PSO-GSA [10], GA-GSA [11], fuzzy-GA [12], and fuzzy-
DE [13] are a few of them.

The meta-heuristic methods of optimization approach can be classified under the 
categories of:

1.	 Biology-based optimization
2.	 Physics-based optimization
3.	 Geography-based optimization
4.	 Other population-based optimization

Types of Optimization

Multi-objective 
optimization
Hybrid optimization
Machine-learning 
optimization
Robust optimization

Fig. 1  Types of optimization methods
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Biology‑based optimization

These types of methods, which are inspired by biological and natural activities [14], 
can be further classified into:

a.	 Evolutionary algorithms
b.	 Swarm-based algorithms

(a) Evolutionary algorithms

A global adaptive search optimization algorithm named Genetic Algorithm (GA) based 
on natural selection [15], another technique called Evolutionary Programming (EP) put 
forward by D. B. Fogel in 1990 [16, 17], Evolution Strategy (ES) inspired by the biologi-
cal principles of evolution [18], developed by Storny et al. [19], Differential Evolutionary 
(DE) algorithm, a widely accepted algorithm to handle nonlinear, multimodal, non-dif-
ferentiable cost functions, swiftly [20] come under evolutionary algorithms. GA employs 
binary coding to represent the problem parameters, while DE uses float point, making it 
more accurate with more adaptive and control parameters [21, 22].

(b) Swarm‑based algorithms

Swarm-based algorithms are highly emerging nature-inspired techniques that mimic 
the interactional behavior of large, homogenous species among themselves and their 
environment. Bird flocks, ant colonies, fish shoals, and honeybees form a few agents of 
these swarm-based algorithms. Particle-Swarm Optimization (PSO), proposed by Ken-
nedy et al. [23], inspired by flocks of birds, is a broadly accepted swarm technique. The 
Bacteria Foraging Optimization Algorithm (BFO), developed by Passino [24], emulates 
Escherichia coli bacteria’s foraging behavior, the Cuckoo Search Algorithm (CS) by Yang 
et al. [25] mimics the breeding practice of cuckoo birds, Ant Colony Optimization (ACO) 
rested on the foraging behavior and pheromones-based communication of ants, Firefly 
Algorithm (FA) is motivated by the flashing behavior of the fireflies and developed by 
Yang [26], the home search strategy of pigeons inspired the Pigeon-Inspired Optimiza-
tion (PIO) algorithm and its improved version, proposed by Duan et al. [27, 28], are vari-
ous swarm-based algorithms. Other swarm-based optimizations include the Coral Reef 
Optimization algorithm (CRO) by Salcedo-Sanz et al. [29], an Artificial Immune System 
(AIS) based on clone generation and maturation [30], Whale Optimization Algorithm 
(WOA) [31], Cat Swarm Optimization (CaSO) [32], Crow Search Algorithm (CSA) [33], 
Moth-Flame Optimization Algorithm (MFO) [34], Grey Wolf Optimizer (GWO) [35], 
Flower Pollination Algorithm (FPA) [36], Honey Bee Mating Optimization (HBMO) 
[37, 38], symbiotic organism search algorithm, Butterfly Optimization Algorithm (BOA) 
[39, 40]. Camel Search Algorithm (CA) [41], Bat Algorithm (BA) [42], and Grasshopper 
Optimization Algorithm (GOA) [43] sum up the group.

Physics‑based optimization algorithms

These optimization algorithms are inspired by the laws of physics, the physical 
behavior of matter, or its physical properties. The Gravitational Search Algorithm 
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(GSA), rooted in the gravitational law and physics laws of motion by Rashedi et  al.
[44], Simulated Annealing (SA) follows the physical process of annealing that is used 
for crystallization [45, 46], Magnetic Optimization Algorithm (MOA) based on the 
attraction and repulsion principle of magnets by Tayarani et al. [47], Intelligent Water 
Drop (IWD) algorithm inspired from the river flow introduced by Hosseini [48] can 
be classified under the physics-based algorithms. Multiverse Optimization (MVO) 
[49], Atom Search Optimization (ASO) algorithm [50], Curved Space Optimization 
(CuSO) [51], Galaxy-Based Search Algorithm (GBSA) [52], Water Cycle Algorithm 
(WCA) [53], Black Hole (BH) algorithm [54], Harmony Search (HS) Algorithm [55] 
add up to the list.

Geography‑based algorithms

The Imperialistic Competition Algorithm (ICA), pioneered by Gargari et  al. [56], 
involves countries’ colonies and imperialists as population; Tabu Search (TS) following 
a search-escape pattern put forward by Glover [57] comes under the geography-based 
algorithms.

Other population‑based algorithms

Sine Cosine Algorithm (SCA) [58], Parallel Seeker Optimization Algorithm (PSOA) [59], 
Artificial Rabbit Optimization (ARO) algorithm [32], Hunter–Prey Optimization (HPO) 
[60], Teaching–Learning-Based Optimization Algorithm (TLBO) [61], Bald Eagle 
Search Algorithm (BESA) [62], Chaotic Optimization Algorithm (COA) [63], political 
optimizer [64], Paddy Fields Algorithm (PFA) [65], Saplings Growth Algorithm (SGA) 
[66], Human-Inspired Algorithm (HIA) [67] are the other population-based optimiza-
tion algorithms.

Figure 2a is on the classification of algorithms and 2b gives another classification based 
on the nature of inspiration. The algorithms can also be classified based on their inspira-
tion. Since the nature-inspired optimization algorithms are inspired by a group or flock 
of animals’ behavior, they can conveniently be classified into a) animal inspired, b) bird 
inspired, c) insect inspired, d) plant inspired, and e) human inspired.

Literature on Hunter–Prey Optimization

HPO is a nature-inspired population-based optimization algorithm by Naurei et al. [60] 
2022 to address optimization problems in different engineering fields. Many researchers 
have employed the algorithm to solve various issues, as in [68], the authors applied the 
HPO algorithm for the optimal positioning of PV-STATCOM with energy loss deprecia-
tion and improving the voltage profile. Active power loss minimization, greenhouse gas 
emission reduction, and improving the hosting capacity of PV and the voltage profile 
are the objectives in [69] applying the HPO algorithm. Article [70] studies the algorithm 
for optimal PV placement with actual power loss reduction and voltage profile enhance-
ment. A combined algorithm of HPO-HDL is put forward in [71] for fake news detec-
tion; HDL stands for Hybrid Deep Learning, an AI technique. HPO is used to identify 
the parameters of solar PV cells of R.T.C. France and STM-6/120 models [72]. A tabular-
ized representation of the same is shown in Table 1.
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There are articles on improvised versions of the standard HPO (IHPO) [73] defined an 
enhanced HPO algorithm for optimal FACTS and wind DG placement with power loss 
reduction, cost reduction, and voltage enhancement as objectives. IHPO with extreme 
machine learning to predict the wind power output and accuracy is studied in [74]. A 
hybrid combination of IHPO and Convolution Neural Networks (CNN) to speculate the 
structural damages in buildings and construction is proposed in [75]. [76] uses the IHPO 
to plan a robot path finding algorithm in unknown surroundings. A table representing 
the discussed works is depicted in Table 2.

HPO motivation

HPO’s elegance lies in its relative simplicity. It uses a small set of intuitive rules to trav-
erse and exploit the search space effectively, making it computationally efficient and 
potentially applicable to many optimization problems. Like other algorithms, HPO also 
has exploration and exploitation phases after initialization, and there is a difference in 
effectively balancing the exploration and exploitation phases. On the other hand, reac-
tive power can be optimally dispatched by finding the prime locations of the desired 
devices using the proposed algorithm. Hence, applying the newly emerging algorithm in 
the engineering field to handle the optimization problem motivates this article.

Research gap and challenges

Several optimization algorithms have been proposed recently, and many are successfully 
in use, while many are in the developing and testing stages. At this point, developing a new 

A

B

Fig. 2  a Classification of optimization algorithms. b Classification based on mode of inspiration
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algorithm to showcase its supremacy could be challenging. However, as an answer to the 
question of ‘What is the need for a new algorithm?’ the NFL theory has been put forward 
by [77]. According to the No Free Launch (NFL), no one can present an algorithm that can 
solve all problems of optimization, and researchers are allowed to suggest new optimiza-
tion algorithms or improve the existing techniques to solve a subset of problems in various 
fields. The new algorithm HPO can handle optimization problems in different engineering 
and non-engineering fields.

Contribution of the article

•	 This article reviews the HPO algorithm, demonstrating its working phases: initializa-
tion, exploration, and exploitation, along with the parameters deciding the algorithm.

•	 The paper also details the newer versions of the algorithm, explaining the improvements 
made to the standard algorithm.

•	 The application of HPO in electrical engineering for optimal DG and capacitor bank 
placement is showcased. Overall, the paper briefs the new nature-inspired HPO algo-
rithm, its variants, and applications.

Further, the paper is categorized, detailing the 2. Standard HPO, 3. Improvised versions 
of HPO, 4. Discussions, and 5. Conclusions.

Table 2  Works on improved Hunter–Prey Optimization (IHPO)

Ref Algorithm Objectives Observations Future scope

[73] EHPO Optimal power flow The efficiency of the prof-
fered EHPO is apt to solve 
real-world complex power 
system problems

EV and PV placement, large 
test-systems

Loss minimization

Cost reduction

Voltage deviation minimiza-
tion and voltage enhance-
ment

[74] IHPO Wind output prediction Improved HPO can boost 
the convergence speed and 
search efficiency of the HPO

It can be studied with PV and 
a hybrid DG model

Increase the efficiency of the 
predicted output

[75] IHPO & CNN To identify the structural 
damages quickly and 
accurately

There is a two-stage 
approach, with CNN at stage 
one to identify the damage 
and IHPO at the second 
stage to estimate its severity

The same approach is used in 
two stages to study the elec-
trical distribution networks 
with DG integration

[76] IHPO Path designing of a mobile 
robot in an unknown 
environment, refraining from 
obstacles

The IHPO is used along with 
an obstacle-detection strat-
egy and a search strategy, 
and it is found to be more 
effective

Application to a real-time 
robot is the paper’s proposed 
future work
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Standard Hunter–Prey Optimization Algorithm (HPO)
Inspiration

Hunter–Prey Optimization (HPO) takes a captivating approach to problem-solving, 
drawing inspiration from the dynamic world of predator–prey interactions. It mimics 
predators’ strategies to hunt and capture their prey. The scenario of a hunter search-
ing for prey, and since prey is usually grouped, the hunter chooses prey far from the 
flock (average herd position). After the hunter finds his prey, he chases and hunts 
it. At the same time, the prey searches for food, escapes the predator’s attack, and 
reaches a safe place, which is the fitness function. HPO is a class of swarm intelligence 
algorithms and falls under the broader category of meta-heuristic algorithms used for 
optimization problems.

Mathematical model of the algorithm

Naruei et al. [60] proposed HPO, a new intelligent optimization algorithm with fast 
convergence and a higher optimization potentiality. The general structure of any algo-
rithm begins with the population in initialization, 

(

�x
)

=
{−→
x1,

−→
x2, . . . . . . .,

−→
xn

}

 . For 

every member, the objective function is computed. The positions of the hunter and 
the prey are updated at every iteration, evaluating the objective function till the algo-
rithm stops. The initial position of the member is given by Eq. (1) from [60],

where xi is the initial position of hunter or prey, rand(1,d) is any random number 
between [0,1], u and l are the upper and lower boundaries, and d is the dimension of 
the problem. The objective function is then evaluated. OF = f

(

�x
)

 . The exploration and 
exploitation are the following stages after initialization. These stages involve a search 
mechanism that pilots the search agents toward the optimal solution. Equation  (2) 
defines the hunter’s position as

where xi,j(t) defines the current position of the hunter and xi.j(t + 1) for the next iteration. 
Ppos represents the position of the prey, and C and Z are the balance and adaptive param-
eters, respectively. μ is the mean of the locations and is evaluated using Eq. (3)

n is the number of iterations, and xt gives the position at the iteration t.
For a random vector P with 0 and 1 values,

For R1 being a random vector, IDX defines the index value of the R1 vector at 
P =  = 0. The adaptive parameter Z can be evaluated from Eq.  (5) with R2 and R3 as 
random vectors between [0,1]; ⊗ denotes the element-wise multiplication.

(1)xi = rand(1, d) ∗ (u− l)+ l

(2)xi,j(t + 1) = xi,j(t)+ 0.5
[(

2CZPpos − xi,j(t)
)

+
(

2(1− C)Zµi − xi,j(t)
)]

(3)µ =
1

n

n
∑

i=1

−→
xi

(4)P =
−→
R1 < C , IDX = (P == 0)
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The balance parameter between the stages of exploration and exploitation, C, can 
be obtained from Eq. (6)

Itr is the current iteration, and itrmax is the maximum iteration count. During itera-
tions, the value of C decreases from 1 to 0.02.

The prey’s position Ppos is calculated using the average value μ from Eq. (3) and the 
Euclidean distance obtained from Eq. (7).

From Eq. (8), the member at the maximum distance is considered prey.

The hunter easily mocks down the animal away from the group, then goes for its 
next, and this continues. Also, there would be a late convergence if the search agent is 
considered at a longer distance from the mean every time. So, to avoid this situation, 
Eq. (9) is defined for N number of search agents.

Now, the new prey position can be given by

The kbest value is N at the start but gradually decreases with iterations and gets 
its value equal to the first member. This is because the hunter chooses the prey at a 
farther distance each time, and thus, the kbest values decrease at each iteration. In 
the hunting scenario, the prey tries to escape from the attacker and reach its herd; 
hence, it can be said that the safe position of the prey is the optimal solution. The prey 
escape phase equation can be given as

Here, in Eq. (11), xi,j(t) and xi,j(t + 1) are the current and the next prey’s positions. Z 
and C are calculated from Eqs. 5 and 6, respectively. R4 is the random vector between 
[− 1,1], and Tpos is the global optimum position. The significance of the cos function 
is that it decides the next prey’s location from the global maximum using the input 
parameters at various radii and angles. To distinguish the hunter and prey mathemat-
ically, by combining equations 2 and 11 and defining another random vector R5 rang-
ing in [0,1], a regulating parameter β = 0.1,

(5)Z =
−→
R2 ⊗ IDX +

−→
R3 ⊗ (∼ IDX)

(6)C = 1− itr

(

0.98

itrmax

)

(7)DEu(i) =
2

√

√

√

√

√

d
∑

j=1

(

xi.j − µj

)2

(8)Ppos =
−→
xi
∣

∣i is the index of Max(end)sort(DEu)

(9)kbest = round(C × N )

(10)Ppos =
−→
xi
∣

∣i is sorted DEu(kbest)

(11)xi,j(t + 1) = Tpos(j) + CZcos(2πR4)×
(

Tpos(j) − xi.j(t)
)
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Equation 12a gives the next position of the hunter for R5 < β, and Eq. 12b updates 
the prey’s position for R5 > β. The flow chart of HPO is shown in Fig. 3.

The following are the suppositions made by the author [60] for the HPO algorithm 
to provide appropriate solutions:

•	 Random selection of hunter and prey assures the search for space exploration. 
Also, there will be a low probability of getting stuck in the local maximum.

(12)

xi,j(t + 1) =







xi,j(t)+ 0.5
�

�

2CZPpos − xi,j(t)
�

+
�

2(1− C)Zµ(j) − xi,j(t)
��

12a

Tpos(j) + CZ cos (2πR4)×
�

Tpos(j) − xi,j(t)
�

12b

Start

Random Population initialization (Eq.1)

Assigning the input parameters like maximum
iteration count, population size

Evaluating the fitness function, and Tpos,

Validating the parameter values, C from Eq.6 and
Z from Eq.5

R5 <
Update the hunter’s
position using Eq.12a

Update prey’s position using
Eq.12b

Evaluate Tpos and fitness function

Does it meet the
cessation criteria?

Stop

yes
no

Fig. 3  Flow chart for HPO
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•	 Search space exploration by selecting the farthest member as prey and the mecha-
nism of the mean distance reduction with every iteration ensure the convergence of 
the algorithm and its exploitation.

•	 The adaptive parameter escalates the population divergence, reduces the severity of 
the hunter and prey position, and guarantees the algorithm’s convergence.

•	 The adjustment parameters of the HPO algorithm are smaller in number and are 
non-gradient algorithms.

Parameters of HPO

The parameters of HPO can be identified as population-related and movement-related 
parameters. Population size and maximum iterations (itrmax) are population-based 
parameters, and regulating parameter β and balance parameter C are the movement-
related parameters. The fitness function can be regarded as the other parameter of 
HPO. Table 3 summarizes the parameters of a few referred algorithms:

Complexity analysis of HPO

The complexity of an optimization algorithm refers to the computational resources it 
requires to solve a problem. There are two main aspects to consider:

Table 3  Parameters of various algorithms

Algorithm Parameters Values

ALO [78] r (walking variable) [0,2]

BOA [39] a (power exponent of modality) 0.1

c (sensory modality) 0.01

p (switching probability) 0.6

GWO [35] a (internal parameter) [0,2]

HHO [79] β (probability parameter) [0,1] Usually 0.5

E (Energy parameter) [− 1,1]

HPO [60] C (balance parameter) [1–0.02]

Β (adjusting parameter) 0.1

MPA [73] a (power exponent of modality) 0.1

c (sensory modality) 0.01

p (switching probability) 0.6

PSO [23] C1, C2(social and cognitive coefficients) 2

ω1 and ω2 (inertia function)

[0.9–0.2]

SCA [58] a (constant) 2

r (balance parameter) 2

TS [57] T (Tabu memory parameter) [0,4] (minimum 
and maximum 
values)

WOA [31] a (internal parameter) [0,2]
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Time complexity

This measures the time it takes for the algorithm to execute, typically expressed in terms 
of the number of basic operations it performs. Here are some common factors influenc-
ing time complexity:

•	 Population size (N): Many optimization algorithms work with a population of solu-
tions. The complexity often increases as the population grows, as the algorithm must 
evaluate and update each solution.

•	 Number of iterations (T): Most algorithms iterate through a loop, refining their solu-
tions. The complexity increases with the number of iterations required for conver-
gence.

•	 Problem dimensionality (D) refers to the number of optimized variables. For some 
algorithms, the complexity increases with the number of variables as the search 
space increases.

•	 Function complexity: The complexity of the objective function (what the algorithm is 
trying to optimize) can also play a role. Evaluating a more complex function in each 
iteration can increase the overall complexity of the time.

Space Complexity

This refers to the amount of memory required by the algorithm to run. Here’s what typi-
cally contributes to space complexity:

•	 Storing solutions: The algorithm needs to store information about each solution in 
the population, including its position in the search space. This memory usage scales 
with the population size (N) and problem dimension (D).

•	 Additional data structures: Some algorithms might use additional data structures 
like sorting mechanisms or temporary variables. These can contribute to the overall 
complexity of space, but their impact is usually smaller than that of storing solutions.

The space complexity is almost similarly computed for most algorithms, such as 
O(N*D), where N is the populace size and D is the dimension.

O(N), the most commonly used notation of complexity, denotes linear complex-
ity, meaning the execution time grows linearly with the population size or number of 
iterations.

Typically, the complexity of the HPO algorithm depends on four components: 
initialization, updating of the hunter, updating prey, and fitness evaluation. Note 
that the initialization process’s computational complexity with N search agents 
is O (N). The computational complexity of the updated process can be given as 
O(T × N )+ O((1− β)× T × N × D)+ O(β × T × N × D) , T denotes the maximum 
number of iterations (earlier referred to as itermax), D denotes the number of problem 
variables, and β is a regulatory parameter with a value of 0.1 [60]. Hence, the total com-
plexity is O(N × (T + (1− β)TD + βTN + 1)).

The complexity of PSO is O (D * N * iter_max). The computation time grows linearly 
with the problem dimensionality D, swarm size N, and maximum iterations iter_max. 
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The complexity of the standard GWO algorithm is O (N * d * Tmax), N is the size, d is 
the population, and Tmax is the maximum number of iterations. ALO’s time complex-
ity is generally considered to be O (D * N * T), where D represents the dimensionality 
of the problem (number of variables being optimized), N represents the population size 
(number of antlions), and T represents the maximum number of iterations. The total 
time complexity of WOA is generally considered to be O (M * N * D + f(N)), where M 
represents the maximum number of iterations, N represents the population size, D rep-
resents the number of dimensions in the problem, and f(N) represents the time required 
to evaluate the fitness function for N individuals. The complexity of HHO is generally 
considered to be O (N (D + T)), T is the maximum iteration count, D is the dimension, 
and N is the population. O(N*T) gives the complexity of SCA. Here, T represents the 
total number of iterations the algorithm runs for and is the population size. Compared 
to HHO, SCA avoids the additional complexity of interactions between solutions (like 
hunting behavior), making it slightly more efficient. In general, Tabu Search is consid-
ered not to have a polynomial time complexity as determining a specific time complexity 
for Tabu Search is observed to be complicated.

Improved versions of the Hunter–Prey Optimization Algorithm
This section discusses various recent works with improvised versions of the HPO algo-
rithm in varied fields of engineering.

Improvising regulating parameter

[76] proposes Improved HPO for robot path planning with an upgraded adjusting (regu-
lating) parameter β and introducing a new parameter called changing parameter (CP). 
The new β is given as

The changing parameter addresses the absence of a transfer parameter in the standard 
HPO. It increases the exploration speed and thus a faster pace for exploitation. Equa-
tion (14) gives the CP value and is followed by the refined position-defining equations.

where α = β × CP.
In this version of IHPO, the author upgrades the regulatory parameter for randomi-

zation and prevents early convergence, which also helps alter the search direction. 
The proposed algorithm is juxtaposed with other contemporary algorithms of Particle 
Swarm Optimization (PSO), Salp Swarm Algorithm (SSA), Fitness-Dependent Opti-
mizer (FDO), conventional COOT and HPO algorithms for 13 benchmark criteria, 
and 30-dimension functions that are widely used by the researchers. The IHPO per-
forms its best when compared with other algorithms. The work uses the nature-inspired 

(13)β = 2× rand− 1

(14)CP = sin

(

C −
t

T

)

(15)

xi,j(t + 1) =

{

xi,j(t)+ 0.5
[(

α2CZPpos − xi,j(t)
)

+ 2(1− C)Zµj − xi,j(t)
)

]15a

Tpos(j) + αCZcos(2πR4)×
(

Tpos(j) − xi,j(t)
)

15b
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algorithm and local search and block detection strategies for robot path planning in an 
unrecognized environment. The author gives a future scope for real Turtlebot robot test-
ing. Also, there is a reach to implement the algorithm in the electrical distribution net-
works with renewable source integration.

Improvising initialization phase

[75] presents a developed version of HPO, which will be upgraded at the initialization 
stage. Instead of random initialization in the conventional method, this work uses tent 
chaotic mapping for initialization and Cauchy distribution for random variables to clear 
the periodic points.

Equations (16) and (17) give the tent mapping and Cauchy’s distribution with Ƞ = 2, 
called the chaotic parameter. Now, initialization Eq. (1) is modified to

The author also suggests a linear combination of prey position, global optimum, and 
mean position, updating Eq. (12) as

The performance of the IHPO is compared to Differential Evolution (DE), Cuckoo 
Search Algorithm (CSA), Particle Swarm Optimization (PSO), Gray Wolf Optimizer 
(GWO), and Moth-Flame Optimization (MFO), and the convergence speed of the 
improved HPO is much faster than the rest. It also surpasses the rest of the algorithms’ 
convergence efficiency, accuracy, and optimization ability. In the referred article, the 
algorithm and Convolutional Neural Network (CNN) are implemented to identify the 
structural damages in buildings and constructions.

[74] Also, the standard HPO can be advanced to IHPO by upgrading the initializa-
tion phase. To increase population diversity, the stochastic reverse learning technique 
has been introduced as

l and u are the lower and upper boundaries, r is an arbitrary value between [0,1], X 
belongs to [l,u], and Xrand gives the random reverse solution. Stochastic reverse learning 
focuses on producing a random inverse response from the present iteration during the 
population search, collating the objective function values within the two solutions, and 
then picking out the prime solution to proceed to the next iteration.

(16)yi+1 =

{

ηyi, 0 ≤ yi ≤ 0.5
η
(

1− yi
)

, 0.5 ≤ yi ≤ 1

(17)yi+1 =

{

µyi + cauchy(0, 1)× 1
N , 0 ≤ yi ≤ 0.5

µ
(

1− yi
)

+ cauchy(0, 1)× 1
N , 0.5 ≤ yi ≤ 1

(18)xi = yi × (u− l)+ l

(19)
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(19)Xrand = l + u− r · X
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Also, the paper introduces a weighing function, ω, to improvise the prey’s position equa-
tion; Eq. (11) is updated as Eq. (20).

Itrmax gives the maximum number of iterations, t is the current iteration, c is the adjust-
ment parameter, and ωmin and ωmax are the weight regulating parameters. It can be observed 
that a similar parameter has been introduced in earlier referred work [74] in improvising 
the prey’s position equation. The IHPO is compounded with Extreme Machine Learning 
(ELM) to estimate wind power and is found effective, providing scope to improve wind 
power prediction accuracy. The scope can be further extended for a hybrid DG placement.

Updating the step size

The step size is upgraded in two stages, high-velocity and low-velocity ratios inspired by 
the Marine Predator Algorithm (MPA) [73, 80], to avoid the optimum values trapped in 
local maxima. The first stage is defined for a higher step size, reflecting Brownian motion 
mathematically:

For P = 0.5, RB is the vector representing Brownian motion, and E is the fittest solution 
matrix; it is the number of iterations and maxit: maximum iterations. For a lower step size, 
the equations considered are

The optimum solution matrix E is given as

(20)xi,j(t + 1) = ω · Tpos(j) + CZcos(2πR4)×
(

Tpos(j) − xi.j(t)
)

(21)ω = ωmin

(

ωmax

ωmin

)
1

1+c·t
Itrmax

(22)it <
1

3
maxit

(23)S =
−→
RB ⊗

(

E −
−→
RB ⊗ xi.j(t)

)

(24)xi.j(t + 1) = xi,j(t)+ P ·
−→
RB ⊗ S

(25)it >
1

3
maxit

(26)S =
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RL ⊗

(−→
RL ⊗ xi.j(t)− E

)

(27)xi.j(t + 1) = E + P · CF ⊗ S

(28)E =






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...

. . .
...
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
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
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For n search agents, d dimensions Xb is the best solution.
The vector RL implements the Levy method in the second stage. The optimal power 

flow problem is addressed for wind energy and FACTS-integrated distribution systems 
using the Enhanced HPO (EHPO). The works conclude that EHPO is an efficient tool to 
solve real-world complex power system problems, with scope for analyzing the same for 
large-scale systems and systems incorporating PV_DG and EV technologies.

Improved HPO

[81] proposes an improved version of HPO, IHPO, to overcome the local maximum trap 
and improve the accuracy of the conventional algorithm. Two steps are involved in stud-
ying the IHPO; firstly, the initial population set is generated using the tent chaotic map-
ping like in [75], followed by an Enhanced Sine Cosine Algorithm (ESCA) adaption and 
Cauchy’s strategy of mutation for the exploration and exploitation stages.

Improvised initialization phase

The initialization stage is reformed using chaotic mapping, which is characterized by an 
increase in population diversity. Mathematically, Eq. (16) follows in the other way,

u = 0.5. The next equation denotes the Tent mapping for controllable randomness of 
variables to avoid unstable fixed points and trapping into the small periods during itera-
tions. For d dimensions and N search agents,

Hence, the initialization equation updates as follows:

Adaption of ESCA

The better global search ability of the SCA is implemented to the standard HPO 
considering

Pv gives the population position, with t being the ongoing iteration number and T 
being the maximum number of iterations. μ is the conversion factor. For rand < Pv, the 
population position is updated using the ESCA; if rand > Pv, the position is updated using 
HPO. μ = 0.01 by [82], and in [81], μ = − 10. The standard SCA is enhanced by initiating 
hyperbolic sine regulating factor and dynamic cosine wave weight coefficient [82].
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Cauchy’s strategy

Cauchy’s mutation strategy is introduced to improve the convergence speed and conver-
gence accuracy and avoid local maximum trapping. The updated population is given as

xid(t) is the current individual position, xid(t + 1) is the position after Cauchy mutation, 
r1 is a random value ranging in [0,1]. The Cauchy mutation is applied to avoid the early 
occurrence of optimization. It is referred from [83], where the condition for Cauchy 
mutation is defined for stdY (t) > Cstd. The algorithm converges at a good rate, and for 
stdY (t) ≤ Cstd , there is a chance of a local maxima trap and Eq.  (33) coming into the 
picture. In general, Cstd, the maximum value of the variation coefficient is 0.1, and the 

(33)xdi (t + 1) = r1 ⊗ xdi (t)+ Cauchy⊗
(

xdbest(t)− xdi (t)
)

Start

Random Population initialization (Eq.1)
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Fig. 4  Flow chart of IHPO
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mutation strategy is applied at T/5 iterations (T is the maximum iteration count). stdY(t) 
is the standard deviation of three consecutive iterations.

The efficacy of the proposed algorithm is tested for eight classic test functions with 
Wild Horse Optimization (WHO), Gray Wolf Optimization (GWO), Sine Cosine Algo-
rithm (SCA), and HPO. The practical application of the algorithm is the proposed scope 
of the referred article. Figure 4 illustrates the flow chart of improved HPO.

Inferences and discussions
From the above literature, HPO is a new nature-inspired meta-heuristic algorithm 
widely implemented in different engineering fields as an optimization technique. HPOA 
is applicable in complex systems, construction fields, and image processing because it 
handles multimodal and non-convex optimization problems. Figure 5 gives a pictorial 
representation of applications of the HPO algorithm.

Electrical engineering applications

The proposed algorithm HPO finds its application in electrical distribution systems 
to find the optimal placements of capacitor banks, custom power devices, and renew-
able energy devices for the system’s loss reduction and voltage enhancement. The fol-
lowing figures accentuate the supremacy of HPO in determining the optimal locations 
of preferred devices with active loss and energy loss redemption. [84] studies the HPO 
for optimal capacitor banks in IEEE-33 and 69 bus systems. The comparative graph for 
power loss reduction for various algorithms highlighting HPO is depicted below:

Figures  6 and 7 portray the active loss reduction comparison using different algo-
rithms for IEEE-33 and 69 bus systems with an optimal capacitor bank placement. [69] 
address the optimal PV placement for active loss reduction; Fig. 8 shows the same for 
prime locations of PV in an IEEE-33 bus system.

Fig. 5  Applications of HPO
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HPO is analyzed on IEEE-33 and 69 buses for PV_STATCOM placement in article 
[68], comparing the energy losses. Figures 9 and 10 graphically depict the superiority 
of HPO in energy loss reduction collating with the rest.

From the graphical analysis in the above figures, the put-forward algorithm HPO 
outperforms the other algorithms and is considered effective in tackling electrical 
engineering problems. Some referred works focus on enlightening the HPO in vari-
ous established fields other than electrical engineering.

Fig. 6  Graphical representation of active loss reduction by capacitor bank placement in IEEE-33 bus system 
using HPO

Fig. 7  Graphical representation of active loss reduction by capacitor bank placement in IEEE-69 bus system 
using HPO

Fig. 8  Graphical representation of active loss reduction by PV placement in IEEE-33 bus system using HPO.
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Journalism

[71] applies HPO in journalism for fake news detection. The authors proposed HPO with 
hybrid deep learning (HDL) to identify the false news from the obtained information.

Civil engineering

An improved version of HPO is used to identify the multi-storey building damages in 
[75]. The process of damage detection by HPO is followed by the neural network tech-
nique, CNN. The two-stage approach is found effective in the respective field.

Robotics

[76] put forward an improvised HPO for robot path planning. The work highlights using 
the proposed algorithm combined with a search strategy to help robots search an obsta-
cle-free path in unknown surroundings.

Rotor dynamics

[85] uses HPO to optimize the squeeze film damper’s key parameters to reduce the 
rotor’s vibration performance. The paper highlights the HPO over PSO in convergence 
speed and accuracy.

Fig. 9  Energy loss graphical depiction using various algorithms for an IEEE-33 bus system

Fig. 10  Energy loss graphical depiction using various algorithms for an IEEE-69 bus system
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Cloud security

HPO finds its application in cloud security in the article [86], where the algorithm is 
used to enhance cloud data security by optimizing the multi-objective function with the 
preservation of information ratio, the ratio of hiding, and the modification degree per-
formed at the critical generation stage as objective functions.

Medicine

A hybrid combination of HPO with ladybug beetle optimization algorithm is used in 
ophthalmoscopy to identify Diabetic Retinopathy (DR) [87].

HPO, along with other methodologies or its improved versions, is used in vast fields 
for the betterment of the desired output. Many works continue to explore the algo-
rithm’s efficacy; the advantages and disadvantages of the algorithm are discussed below.

Highlights of HPO

•	 Diverse Exploration: The predator–prey dynamics encourage the algorithm to cover 
multiple regions of the solution space simultaneously, aiding in fleeing from local 
optima.

•	 Flexibility: HPOA can quickly adapt to different problem domains by tuning its 
parameters and mechanisms.

•	 Convergence Speed: The algorithm often demonstrates faster convergence due to the 
dynamic interactions between hunters and prey than the other existing algorithms 
[60].

Drawbacks of HPO

•	 Parameter Sensitivity: Effective parameter tuning is crucial for optimal performance, 
and improper settings can lead to premature convergence or stagnation. This prob-
lem is addressed in  [75]  work and introduces Cauchy’s distribution to avoid the 
same.

•	 Hem in local maxima: Before getting entrapped in the local maximum and impro-
vised versions, inscribing the same is referred from the literature.

Conclusion
The Hunter–Prey Optimization Algorithm presents an intriguing approach to optimiza-
tion inspired by nature’s predator–prey interactions. While it has demonstrated success 
in various applications, it is essential to recognize its strengths and weaknesses when 
considering its implementation. As research in this field continues to evolve, a deeper 
understanding of the algorithm’s behavior and its potential to solve complex optimiza-
tion problems will emerge.

In summary, this comprehensive analysis highlights the significance of the Hunter–
Prey Optimization Algorithm as a promising optimization technique; Fig. 11 gives an 
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overview of the HPO algorithm. Inspired by nature, its unique approach to explora-
tion and exploitation provides a fresh perspective on optimization. The benefits of the 
review can be addressed below.

For Researchers:

•	 Consolidated knowledge: The paper summarizes the current state of the art and 
key concepts of the HPO algorithm.

•	 Future research directions: By highlighting areas for future work, as suggested 
previously, the paper can guide researchers toward promising avenues for further 
development and application of HPO.

•	 Comparative analysis: A well-structured review paper can compare HPO with 
other optimization algorithms, highlighting its advantages, limitations, and suit-
able use cases. This can help researchers choose the most appropriate optimiza-
tion technique for their problem.

For developers and practitioners:

•	 Understanding HPO’s potential: The paper can showcase the capabilities of HPO 
for solving various optimization problems. This can encourage developers to 
explore its application in their projects.

•	 Practical implementation guidance: The review paper can provide practical 
insights for implementing HPO with existing algorithms. This can save developers 
time and effort during implementation.

For the field of optimization:

.
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•	 Advancement of HPO: The review paper can stimulate further research and devel-
opment efforts on HPO, improving its performance, adaptability, and theoretical 
understanding.

•	 Comparison with existing techniques: By comparing HPO with established optimi-
zation algorithms, the paper can contribute to a wider understanding of the strengths 
and limitations of different approaches. This can guide researchers toward develop-
ing more powerful and versatile optimization tools.

•	 Promoting broader use: A well-disseminated review paper can raise awareness of 
HPO within the optimization community, potentially leading to its broader adoption 
in various scientific and engineering fields.

Future scope of HPO:
The potential areas where the review can have its future scope can be identified as:
Enhancing the HPO algorithm:

•	 Parameter tuning: While HPO avoids excessive parameters, explore the impact of 
fine-tuning existing ones like initial population size, levy flight parameters, or the 
balance factor between exploration and exploitation. [88] enhances the standard 
HPO by parameter tuning.

•	 Hybridization with other algorithms: [89, 90] suggests hybridizing with WHO and 
SFO for improved performance. Works on HPO hybridized with other algorithms 
like PSO and GA can be a suggested scope in hybridization.

•	 Multi-objective optimization: [84] applies HPO for multi-objective functions, paving 
the way for many more works in the same direction.

The future outlook in theoretical analysis can be:

•	 Investigating whether the current HPO algorithm accurately reflects real-world 
predator–prey dynamics and exploring potential improvements by incorporating 
biological concepts can be a direction of future extension.

Additional considerations like the parallelization of HPO for large-scale applications 
and its adaptiveness to a dynamic environment could also be expected.
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