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Abstract 

The accuracy of the channel state information is important for correct channel estima-
tion. However, when conducting channel estimation, more resources are allocated 
to pilots for estimation compared to data transmission. Furthermore, when the num-
ber of users increases, the number of pilots for estimation increases. Subsequently, 
there is an increase in the transmission overhead and hence reduces the spectral 
efficiency. Therefore, the advantage of obtaining channel state information is signifi-
cantly reduced. To improve the performance of massive MIMO systems, the study 
analyses the tradeoff between the number of resources required to correctly estimate 
the channel using pilots to avoid interference while maintaining optimum spectral 
efficiency in massive MIMO antennas. Therefore, this study proposes an algorithm 
to address the challenge of optimum resource allocation in a massive MIMO. Pilot Fre-
quency reuse, max–min fairness algorithm, and Zadoff–Chu sequences were adopted 
to achieve optimal allocation of resources and reduce interference for users in different 
cells using the same frequencies. The results reveal improved performance in terms 
of spectral efficiency with the adoption of the resource optimization approach. The 
study contributes to the performance improvement of massive MIMO antennas for 5 G 
communications.

Keywords: Channel state information, Massive MIMO, Resource allocation, Spectral 
efficiency

Introduction
Accurate channel state information (CSI) enables the system to achieve optimal perfor-
mance by using multiple antennas in a massive MIMO [1]. Achieving the correct esti-
mation for the CSI, while utilizing the least number of pilots for estimation and more 
resources for transmission is essential to acquire optimal spectral efficiency [2]. Research 
shows that accurate CSI is essential in ensuring improved system performance [3]. Each 
transmitting antenna in massive multiple input multiple output (MIMO) networks sends 
pilot signals to analyze the channel during the channel estimation process. To determine 
the wireless channel status, the transmitter analyzes the CSI out of each cell. To support 
receiver channel estimation, each transmitting antenna is assigned a unique pilot wave-
form during each coherence interval, and all pilots have to be mutually orthogonal [4].
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The challenge, however, is to distribute orthogonal pilot sequences to all users within 
the coherence interval due to resource constraints [5]. Non-orthogonal pilot train-
ing sequences are re-used in neighboring cells considering that orthogonal pilot train-
ing sequences are finite during coherence time. As a result, estimates from nearby cells 
contaminate the channel estimates obtained from such cells, minimizing the estimation 
quality and eventually leading to pilot [5, 6]. Optimal resource allocation is vital for effi-
cient performance of the system [1, 7]

Therefore, this study addresses the challenge of optimum resource allocation in mas-
sive MIMO antenna using pilot assignment methods. According to research pilot assign-
ment methods can improve resource allocation and reduce pilot contamination [7–12]. 
Moreover, the adoption of time division duplexing (TDD) minimizes the number of 
pilots used for channel estimation. When compared to frequency division duplexing 
(FDD), the adoption of TDD has a significant impact on spectral efficiency when the 
coherence interval is shorter [13]. TDD can be adopted for estimation to allow mobility 
of user terminal with limited coherence interval while reducing the impact on the spec-
tral efficiency.

The rest of this paper is organized as follows; The Related Works section presents 
studies that address similar challenges of massive MIMO resource allocation. The Prob-
lem Formulation section elaborates on the parameters used, the massive MIMO channel 
model, and the objective function. The Methods section explains the spectral efficiency 
optimization techniques, pilot contamination mitigation techniques, and the proposed 
algorithm. The Results and Discussion section presents the spectral efficiency results 
against the signal-to-noise ratio, the number of base station antennas, the coherence 
interval, and the frequency reuse pattern. Finally, the paper provides a conclusion and 
recommendations for future works in massive MIMO systems.

Related works
Different authors have exploited a variety of pilot assignment approaches to combat 
pilot contamination. Compared to cell-centered users, cell edge users are most affected 
by pilot contamination, hence, scholars recommend the allocation of the right propor-
tion of power to data and pilots [9, 14]. An efficient pilot allocation based on asynchro-
nous scheduling which was based on the fractional pilot reuse was proposed by [15]. The 
different sets of pilots are allocated to the different groups of users on the cell edge and 
the cell center. The results indicated that the performance of the recommended scheme 
outperformed the conventional integer reuse approach [15]. However, a drawback of the 
fractional pilot reuse method is the introduction of an additional pilot overhead [14].

The deep learning approach is used for CSI sensing and recovery based on the chan-
nel structure from training samples; thus, the CSI is recovered [16]. A novel CSI sens-
ing and recovery approach that learns to use channel structure from training samples to 
determine the CSI was developed by [17]. The results show considerably improved signal 
reconstruction quality and reduced time complexity compared with existing compres-
sive sensing approaches [17]. Research by MSE [18] also uses a deep learning approach 
whereby the pilot power allocation vector is optimized using a multi-layer fully con-
nected deep neural network (DNN) that receives the channel large-scale fading coeffi-
cients as input and outputs the pilot power allocation vector to minimize the sum mean 



Page 3 of 16Misso  Journal of Electrical Systems and Inf Technol           (2024) 11:16  

square error (MSE). The DNN’s loss function is defined as the sum MSE, and the DNN 
is trained using an unsupervised learning technique. Simulation findings reveal that the 
suggested scheme outperforms existing schemes in terms of total MSE [18].

The Zadoff–Chu (ZC) sequences mitigate interference between neighboring cells 
using the same time–frequency resources. The sequences at each base station are multi-
plied element-wise with the base station row to make the sequence orthogonal across the 
network [19]. The user terminal selects randomly one of the multiplied ZC sequences 
from a given set for transmission on the channel at the beginning of the coherence inter-
val. The sequence has a small variation in frequency in the advantage of channel esti-
mation at the receiver and a low cross-correlation property hence producing a small 
inter-cell interference [20]. Research by Ali et al. in [19] proposed a design of orthogonal 
uplink pilot sequences to eliminate pilot contamination from TDD massive MIMO sys-
tems. The proposed design uses Zadoff–Chu (ZC) pilot sequences and eliminates pilot 
contamination during the channel estimation. The ZC sequence generates orthogonal-
ity among pilot sequences across the neighboring cells. Simulation results show that the 
sum-rate performance of the proposed design significantly outperforms both the pilot-
assisted CE and MMSE CE.

The angle of arrival (AOA)-based methods entail the process whereby non-overlap-
ping users reuse pilots with different AOA. The location-based PR scheme to alleviate 
the pilot contamination was proposed in [21] by assigning pilot sequences based on 
the path loss as well as the AOAs. The angle of arrival (AoA) approach has been used 
to acquire location information of users to estimate and monitor the distance between 
users in different cells [10, 12], thus facilitating to determine the possible transit power 
interference among users.

A joint pilot allocation and pilot sequences optimization scheme was recommended to 
mitigate pilot contamination and maximize spectral efficiency [10]. The approach uses 
location information to compute the distance between users in different cells to deter-
mine the interference among users. Furthermore, the angle of arrival (AoA) pilot assign-
ment scheme with low complexity optimization problems was used in the research by 
Shahabi et  al. in [12], which exploited a pilot assignment scheme with low complex-
ity optimization problems. To address the non-convex optimization, the problem was 
solved iteratively and sequential convex programming was exploited. The results showed 
that the proposed scheme outperformed the conventional methods in terms of complex-
ity; however, a decline in the uplink sum rate was experienced.

Problem formulation
For this study, the assumption is that the channel model is Rayleigh; thus, there is no 
correlation between reception and the transmission antennas. The coherence interval of 
τc was obtained from the product of the coherence time, and coherence bandwidth, Bc as 
follows,

For a multi-cell massive MIMO system with K user terminals per cell and a reuse pat-
tern of ηreuse in the network, the pilots occupy τp samples from the total τc samples. If 
the number of user terminals is small, larger cluster sizes are reasonable since the pilots 

(1)τc = Tc × Bc
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occupy a small portion of the entire coherence interval as τp =
∑nreuse

i=1 Ki . Assuming 
that each cell has the same number of user terminals, then τp = k × nreuse . The pilot 
overhead thus becomes the fraction K×ηreuse

τc
 . Hence, as the number of users increases per 

cell, the number of pilot sequences increases but the spectral efficiency decreases. How-
ever, the disadvantage comes from increasing the pilot overhead within the coherence 
interval. The channel coherence interval decreases as the carrier frequency and user ter-
minal speed increase. The coherence time varies inversely with the Doppler spread. As 
the speed of the vehicle increases, the coherence time becomes shorter. The COST231 
Hata model for the urban environment was used as the path loss model. The path loss, 
according to [22], is modeled as follows:

From Eq. (2), β j
lk represents the average channel gain per antenna of the channel between 

the user terminal i in cell l and the base station j, σ j
lk is the shadow fading, γ represents 

the median channel gain at a reference distance of 1 km in the large-scale fading model, α 
is the path loss exponent in the large-scale fading model and djlk is the distance between 
the transmitter and the receiver. To ensure effective channel estimation, it is necessary to 
use as few resources as possible that are adequate for piloting. In general, resources are 
divided among uplink pilots, downlink pilots, uplink data, and downlink data. Therefore, 
the equation is as follows:

such that τul is the uplink data, τdl is the downlink data, τul,p is the uplink pilots, and τdl,p 
is the downlink pilots.

In TDD, only uplink pilots are required to estimate the channel, and only the base sta-
tion obtains the CSI [23]. The amount of time and frequency resources required for pilot 
transmission in TDD is determined by the number of concurrent user terminals served. 
As a result, adopting the reciprocity principle in TDD such that if the uplink channel is 
Hu then the downlink becomes HH

u  . TDD makes massive MIMO scalable as the number 
of base station antennas increases. As a result, we have,

The aim was to maximize resource usage while increasing spectral efficiency. As a result, 
the approach was to reduce the resources assigned to pilots for estimation to improve 
the resources assigned to transmission while minimizing the pilot contamination and 
enhancing the spectral efficiency. As a result, the objective was to determine τp that 
enhances spectral efficiency, and hence the equation can be:

(2)β
j
lk = σ

j
lk + γ − 10αlog10

(
d
j
lk

1Km

)

(3)τul + τdl + τul,p + τdl,p = τ ,

(4)τul + τdl + τul,p = τ .

(5)

argmax
τc

s.t. 0 ≤ K ≤ τp
τp ≤ τc

ru,d

(
1− τp

τc

) K∑

k=1

Cinst,k
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However, Cinst,k ≥ log2 (1+ SINRk) , where SINR is the Signal to Interference plus 
Noise Ratio. Assuming that the number of users K is similar in all cells, then

As the number of base station antennas rises, M approaches infinity, then hljk =
√
β l
jk  . 

Accordingly,

Methods
The objective of the study was to improve resource allocation in massive MIMO anten-
nas to ensure efficient channel estimation. However, since there is a tradeoff when 
allocating the time–frequency resources for pilots and data transmission, an optimum 
method for the distribution of resources was required. For this study, the use of Zadoff–
Chu sequences, combined with pilot frequency reuse, was used to ensure optimal alloca-
tion. Pilot frequency reuse enabled efficient resource allocation for pilots while ensuring 
neighboring cells avoid using the same pilot signals and therefore mitigate interference. 
The primary data were generated using a stochastic process based on random channel 
generation and software was used for simulation of mathematical models. Since the 
model involves stochastic processes with repeated experiments, the Monte Carlo simu-
lation was used.

Zadoff–Chu sequences

The use of Zadoff–Chu (ZC) sequences, together with pilot frequency reuse for the pilot 
assignment was adopted for this research. Pilot frequency reuse allowed efficient alloca-
tion of resources for pilots while ensuring neighboring cells do not use the same pilot sig-
nals, and hence do not interfere. However, ZC sequences are adopted to further reduce 
interference between neighboring cells by enhancing orthogonality among cells using 
the same frequencies. The preamble sequences are created by cyclically shifting the root 
ZC sequences. The sequences’ cross-correlation characteristic across various preambles 

(6)
SIN Rkj =

∣∣E
[
h
l
jk

]
|2

1+ Var{hjkl}

(7)SIN Rlk =

(
β l
jk

)2

∑L
j �=l

(
β l
jk

)2

(8)

argmax
τc

s.t.0 ≤ K ≤ τp
τp ≤ τc
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based on cyclic shifts reduces intra-cell interference from successive random access 
attempts utilizing preambles generated from the same ZC root sequence. Figure 1 shows 
the block diagram of a Zadoff Chu sequence [24]. The Zadoff–Chu sequences were used 
to minimize interference between adjacent cells by increasing orthogonality among cells 
that use the same frequencies as explained in [19]. The Zadoff–Chu sequence is repre-
sented by Zq(n) = e−j(

πqn(n+1)
N ) where N is the sequence length such that q is the root of 

the sequence and j =
√
−1 and n = 0, 1, . . .N − 1 [24].

Frequency reuse

The frequency reuse factor establishes the basis for the creation of clusters, whereby, 
the cells within a cluster cannot use the same frequencies for transmission in a com-
munication network. Frequency reuse was implemented to minimize interference. 

Fig. 1 Zadoff Chu sequence

Fig. 2 Frequency reuse pattern
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Cells in close vicinity using the same frequency resource have an increased probabil-
ity of interference. However, spectral efficiency can be maximized, at the expense of 
increased interference. Figure  2 shows the frequency reuse pattern. As a result, the 
pilot reuse must be formulated such that interference is reduced; while, spectral effi-
ciency is increased. The design is made by distributing the network into clusters based 
on the frequency reuse pattern, ηreuse , while the network resources represented by 
(τc) , were assigned to the cluster for the number of users per cell of K. Therefore, the 
resource allocation for pilots is τp = ηreuse × K  . The proportion to the total resources 
becomes K×ηreuse

τc
 while for data becomes τc − (K×ηreuse)

τc
 . Examining the pre-log factor (

1− τp
τc

)
 in the Eq. 5 such that τp = ηreuse × K  ; so when 

(
ηreuse×K

τc

)
 is minimized, the 

spectral efficiency approaches increases. The number of users in the system and the 
size of the frequency reuse pattern must be constrained to a minimum to maximize 
spectral efficiency.

Duplexing mode

Both frequency division duplexing (FDD) and time division duplexing (TDD) facilitate the 
acquisition of the channel state information (CSI) from the channel. After the analysis of 
both TDD and FDD, the TDD operation was adopted, since in TDD, only the base station 
performs channel estimation and thus maximizes the spectral efficiency. Furthermore, 
TDD exhibits uplink and downlink duality as the TDD offers reciprocity and eliminates the 
need for feedback. With TDD, only the uplink transmission uses pilots as shown in Fig. 3, 
and the results can be transposed to obtain the downlink channel matrix. The user terminal 
transmits pilots and the base station performs uplink channel estimation. Therefore, adopt-
ing the principle of reciprocity in TDD such that if the uplink channel is Hu then the down-
link channel is HH

u .

Max–Min fairness algorithm

The pilot assignment scheme was implemented to improve the efficient use of resources 
while reducing pilot contamination. As previously stated, with an increased number of 
antennas and users, more resources are required for channel estimation to ensure effective 
transmission. The need for optimization of resources necessitates the use of efficient pilot 
assignment methods. The channel estimation error, as demonstrated in [25], is equal to 
(γk βk) , where γk is the predicted channel and βk is the actual channel. The following equa-
tions illustrate the relationship between the channel errors and time–frequency resources,

Fig. 3 TDD duplexing mode
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Therefore, for correct channel estimation, ρulτp is large such that

However, for practical applications, it is difficult to achieve absolute perfection in esti-
mation; thus, τp should also be considered since the increase in ρulτp surges the use 
of network resources. Since there is a tradeoff when allocating the time–frequency 
resources for both pilots and data transmission, an optimal method for the distribution 
of resources between the two is required. Therefore, the allocation of time–frequency 
resources was done using a max–min fairness algorithm. The max–min fairness algo-
rithm has been used in [26]. The max–min fairness was selected due to its fairly low 
computational complexity and can be used for maximizing other metrics iteratively. The 
algorithm has shown the optimal distribution of resources in studies such as [13]. The 
time–frequency resources are allocated optimally to the pilots based on the number of 
users in the system, the rest of the bandwidth is shared between uplink and downlink for 
data transmission and reception.

The resource allocation algorithm

Based on the principle, the allocation is such that, to increase the bandwidth allocated 
to one source in the network, the bandwidth allocated to other sources which already 
receives lower allocation, is decreased. The time–frequency resources are allocated opti-
mally to the pilots based on the number of user terminals, the rest of the bandwidth is 
shared between uplink and downlink for data transmission and reception. The proposed 
system was tested with various frequency reuse patterns to identify the impact of fre-
quency allocation on the system capacity in a multicellular system. The pilot sequences 
are designed such that if pilot sequences from neighboring cells are φl and φ

ĺ
 , should be 

orthogonal. During uplink transmission, all the user terminals communicate (synchro-
nized transmissions and reception) to the base station by sending pilots and data. The 
size of the frequency reuse pattern is denoted by ηreuse and the pilot sequence is denoted 
by (φ) , which was distributed among all cells. The pilot sequence within a cluster was 
φ =

[
φ1, φ2, . . . φηreuse

]
 ǫ φηreuseK × ηreuseKφηreuse .

The pilot reuse factor, ηreuse is the number of cells per cluster that were assigned to 
the orthogonal pilots. φentire network =

[
φcell1 , φcell2 , . . . φcelll

]
=

[
φcell1 , φcell2 , . . . φcelll

]
. 

(9)γk = {E
[
|ĥmk |

2]

(10)γk =
ρulτpβ

2
k

1+ ρulτ pβk

(11)ρulτp ≈ 1+ ρulτp.

(12)γk =
β2
k

βk
= βk
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Since the entire network has L cells these cells were split into q clusters. Within a clus-
ter, the number of cells was based upon the value of ηreuse decided; hence, the number 
of cells per cluster is equal to ηreuse ; while, the number of clusters is,q = L

ηreuse
 . The dis-

tribution of pilots within a cell is given by, φcelll =
[
φcelln, user1 , φcelll ,user2 , . . . φcelll ,userk

]
 . 

Algorithm 1 shows the Proposed Algorithm for Optimum Resource Allocation. 

Algorithm 1 Proposed Algorithm for Optimum Resource Allocation

Require: M,K,Kact, N, (Cinst,k), H, ρ, reusefactor
Ensure: maxSpectralEfficiency
1: Initialize parameters
2: Generate the Zadoff-Chu sequence
3: while Kact ≤ K do
4: Determine the user with the lowest achievable rate
5: for K = 1 to K do
6: Calculate the achievable rate for each subcarrier (Cinst,k)
7: for N = 1 to N do
8: Calculate the interference power
9: Determine the subcarrier with the lowest achievable rate
10: Allocate resources to the selected user
11: Allocate subcarriers to the selected user based on frequency reuse
12: end for
13: end for

return R
14: end while
15: for K = 1 to Kact do
16: Compute the Spectral Efficiency using equation (8)
17: end for

Results and discussion
With pilot contamination, to correctly estimate the channel and avoid interference, the 
channel frequent estimation. However, estimating the channel using pilots drains the 
time–frequency resources for the transmission of data. As a result, the benefit of acquir-
ing CSI is compromised by the inefficient use of the available spectral. An increase in the 
resources for channel estimation (using pilots), to mitigate pilot contamination reduces 
the spectral efficiency. Therefore, in mitigating pilot contamination, a compromise exists 
between the availability of time–frequency resources for estimating the channel and the 
reduction of pilot contamination. Therefore, the resource optimization techniques were 
deployed to improve spectral efficiency while reducing the pilot contamination by adopt-
ing TDD, pilot reuse, and Zadoff Chu sequencing. Since the proposed optimization is 
based on the distribution of time–frequency resources between the uplink transmission, 
downlink transmission, and pilots (uplink pilots) used for estimation by TDD approach, 
the total amount of transmission resources is distributed as follows:τ c = τp + τul + τdl . 
Channel parameters, including the number of user terminals, the number of base station 
antennas, the size of the coherence interval and the signal-to-noise ratio, influence the 
performance of the system. Therefore, the analysis of the spectral efficiency against the 
parameters is essential.

Spectral efficiency against the SNR

Figure  4 shows the variation of spectral efficiency with the SNR. The figure  shows a 
plot of spectral efficiency per cell against the SNR. The figure was plotted for 18 user 
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terminals, a power of 0dB, and 128 base station antennas. The results show that, as the 
signal-to-noise ratio (SNR) increases, the ZF precoder with improved resource alloca-
tion performs better than the conventional ZF precoder. The improved performance is 
a result of enhanced capabilities for inter-user interference and noise elimination. The 
increase in uplink SNR influences the quality of channel estimation obtained in the 
uplink and hence improves both uplink and downlink spectral efficiency [25]. However, 
the increase in spectral efficiency causes saturation, as SNR further increases. The results 
show that at SNR = 20 dB, the ZF precoder with improved resource allocation achieves 
a spectral efficiency of 106.36 bps/Hz  per  cell; while, the conventional ZF precoder 
achieves a spectral efficiency of 74.45 bps/Hz per cell. Similar approaches for resource 
optimization and efficient pilot assignment are shown in recent studies [10–12].

Spectral efficiency against the number of base station antennas

Figure  5 shows a plot of spectral efficiency against the number of base station anten-
nas per cell. As the number of base station antennas increases, the ZF precoder with 
improved resource allocation performs better than the conventional ZF precoder. As the 
number of base station antennas reaches 500, the ZF precoder with improved resource 
allocation reaches a spectral efficiency of 115.2 bps/Hz per cell while that of the conven-
tional ZF reaches 95.98 bps/Hz  per  cell. The results show an improvement compared 
to related works in ZF precoding as presented in [27]. According to theory, with mas-
sive MIMO, an increase in the number of antennas increases throughput but reaches 
the saturation point with pilot contamination. As the number of base station antennas 
increases, the spectral efficiency increases logarithmically to saturation. The increase in 
the number of base station antennas increases the system’s ability to focus the beam on 
intended user terminals and mitigate interference. The channel estimation eventually 

Fig. 4 Variation of spectral efficiency with the SNR
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improves, while reducing the need for allocating more resources for channel estimation 
hence increasing the spectral efficiency.

Spectral efficiency against the coherence interval

Figure 6a shows the variation of the spectral efficiency with the proportion of coherence 
interval allocated for data. The figure  depicts the variation between the spectral effi-
ciency and the coherence interval assigned to data (τc − τp) . The coherence interval was 
set at 200 samples, the power was 0 dB, 18 user terminals, and 128 base station antennas. 
The Figure shows how spectral efficiency increases as more time–frequency resources 
are assigned to data transmission; while, fewer resources within the coherence interval 
were provided to pilots’ signals for estimations. The length of the pilot training sequence 
varies inversely proportional to the average spectral efficiency. Figure 6 shows the spec-
tral efficiency reaches up to 103.3 bps/Hz per cell with resource optimization and up 
to 80.3 bps/Hz per cell without resource optimization. When the coherence interval is 
divided equally between pilots and data, the spectral efficiency reaches 51.4 bps/Hz per 
cell with resource optimization and 39.9 bps/Hz per cell without resource optimization.

As the number of base station antennas increases, the spectral efficiency rises toward 
saturation as it is constrained by the coherence interval (τc) . Figure 6b depicts the spec-
tral efficiency after increasing the number of base station antennas to 256; while, the 
coherence interval was set at 200 samples, and the power was 0 dB, and 18 user termi-
nals. Figure 6b shows the spectral efficiency reaches 118.7 bps/Hz per cell with resource 
optimization and 92.3 bps/Hz per cell without resource optimization. According to the 
literature, the increase in the number of base station antennas influences the increase 
in the beamforming gain [28]. When the coherence interval is divided equally between 
pilots and data, the spectral efficiency reaches 59.1 bps/Hz per cell with resource optimi-
zation and 45.9 bps/Hz per cell without resource optimization.

Fig. 5 Variation of spectral efficiency with the number of base station antennas
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Spectral efficiency per user against the number of users and the size of frequency reuse 

pattern

Related works illustrate the role of cell densification in mitigating interference and 
improving the system performance as depicted in the analysis by [29]. Figure 7 shows 
the instantaneous spectral efficiency. The figure depicts the compromise between the 
three parameters. As was previously mentioned, the objective is to increase spectral effi-
ciency; however, a tradeoff between the number of user terminals and the size of the 
frequency reuse pattern was required. According to the literature, as the number of user 
terminals increases, the spectral efficiency decreases as the limited resources are shared 
between users and pilots [27].

Fig. 6 Variation of spectral efficiency with the proportion of coherence interval allocated for data
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Through analysis of the variation of the number of users and the size of the fre-
quency reuse pattern, the instantaneous spectral efficiency per user is determined. 
When the number of users and frequency reuse are both minimum, the instantaneous 
spectral efficiency per user reaches its maximum. Thus, τp is decreased along with the 
product of coherence interval and the spectral efficiency. Consequently, the fraction 
of bandwidth available for transmission of data is maximized. Figure  4 displays the 
yellow areas when the number of users and the spectral reuse pattern are minimal.

According to the literature, an increase in the number of user terminals reduces the 
spectral efficiency as users share finite network resources. In a massive MIMO system 
with TDD, where the number of user terminals is typically lower than the number of 
base station antennas, the overhead resulting from the acquisition of the uplink CSI is 
linearly proportional to the number of user terminals. Pilot overhead would therefore 
increase as more resources would be allocated to estimation than to data transmis-
sion. The proposed technique aimed to reduce pilot contamination while enhancing 
spectral efficiency.

Figure  8 illustrates the variation of the number of user terminals (K), the size of 
frequency reuse pattern (ηreuse) , and the spectral efficiency (Cnet) As previously 
noted, the aim is to maximize spectrum efficiency; nevertheless, a balance between 
the number of user terminals and the size of the frequency reuse pattern was 
required. When the number of user terminals or the size of the frequency reuse pat-
tern rises, or when both of these variables rise at the same time, the associated spec-
tral efficiency decreases. Furthermore, if the number of user terminals or the size of 
the frequency reuse pattern reduces, the resultant spectral efficiency increases.

The algorithm was simulated with three reuse factors of 1, 3, and 7 (Table 1). The 
results revealed that when the number of users reached a maximum of twenty-one; 
while, the size of the frequency reuse pattern was 7, the spectral efficiency improved 
to 14.5 bps/Hz/cell. On the other hand, the instantaneous spectral efficiency was 
6.76 bps/Hz/cell for the frequency reuse pattern of 7. Nevertheless, when the size 
of the frequency reuse pattern was 1, maximal spectral efficiency could be reached. 

Fig. 7 Instantaneous spectral efficiency
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The results revealed that when the number of users expanded to a maximum of 18, 
but the size of the frequency reuse pattern remained constant at one, the spectral 
efficiency reached 49.01 bps/Hz/cell, with a maximum instantaneous spectral effi-
ciency of 6.97 bps/Hz/cell.

Computational complexity comparison

Considering the max–min fairness algorithm, the complexity is O(n2) . For each 
user (K) and in a multi-cell system, with (L) cells, the complexity of the precoder 

Fig. 8 Variation of spectral efficiency per user with the number of users and the size of frequency reuse 
pattern

Table 1 Variation of spectral efficiency with the size of frequency reuse pattern

Number of user terminals (K) Frequency reuse pattern

η = 1 η = 3 η = 7

Instantaneous spectral efficiency (bps/Hz/cell) for K = 1 6.97 6.90 6.76

Net spectral efficiency (bps/Hz/cell) for K = 18 49.01 37.51 14.51

Table 2 Comparison of computational complexity

Literature Methodology Computational 
complexity

Nie and Zhao [10] Joint pilot allocation and pilot sequences optimization O(KL)3

Shahabi et al. [12] CEP with limited cooperation among cells to reduce overheads O(MKL
2)

Ma et al. [31] Joint optimization pilot allocation O(KL2logL)

Mei et al. [32] ZF-PCP O((K)L)

Liu et al. [33] Near MMSE precoder using the parametric model O(TKL)2
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is O(MK 2L) . The combined complexity thus becomes O(n2)+ O(MK 2L) . Therefore, 
the overall complexity upper bound of the proposed method is O(MK 2L) . The results 
are comparable with results obtained in [30]. Table 2 shows a comparison of the pro-
posed algorithm with other approaches in terms of the computational complexity 
in a massive MIMO multi-cell scenario. From the table, M is the number of base 
station antennas, K is the number of single-antenna user terminals, L is the number 
of cells, and T represent the total number of iterations. The works of literature were 
selected based on the adoption of massive MIMO multi-cell scenario, similar to this 
study, as opposed to other studies with a focus on single-cell scenario.

Conclusion and future work
In massive MIMO systems, during transmission the channel is estimated using the 
channel state information (CSI). The CSI uses the pilot overheads from the limited 
network resources to continuously estimate the channel. Consequently increasing 
pilot overhead and reducing the spectral efficiency, since more resources are allo-
cated to pilots for estimation as opposed to actual data transmission. As a result of 
the inefficient use of the available spectra, the benefit of acquiring CSI for estima-
tion is diminished, necessitating the use of effective resource allocation techniques. 
As a result, the max–min fairness algorithm, pilot frequency reuse, and Zadoff–
Chu sequences were adopted in the proposed approach. The Zadoff–Chu sequences 
reduced pilot contamination during the channel estimation process, through the use 
of orthogonal codes among pilot sequences across the neighboring cells. The orthog-
onal codes can be re-used based on the frequency reuse pattern, hence the adoption 
of pilot frequency reuse. The max–min fairness algorithm ensured the optimal alloca-
tion of resources. The numerical results indicate an overall improvement in spectral 
efficiency. To further improve the performance of massive MIMO systems, the artifi-
cial intelligence-based method and Angle of Arrival methods can be further explored.
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