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Abstract 

The growing interest in electric vehicles (EVs) for transportation has led to increased 
production and government support through legislation since they offer environmen-
tal benefits such as reduced air pollution and carbon emissions compared to conven-
tional combustion engine vehicles. This shift toward EV technology aligns with the goal 
of preserving the natural environment. To fully utilize EVs, effective management 
of the power grid is crucial, particularly in radial distribution network systems (RDNS) 
as they pose stress and deviation of power system parameters from their normal. This 
study proposes a novel strategy for maximizing EV utilization through EV charging 
stations (EVCSs) in an RDNS by considering factors such as load voltage deviation, 
line losses, and the presence of distributed solar photovoltaic systems at load centers. 
The research begins by segmenting the RDNS into zones, followed by the application 
of an artificial intelligence-based hybrid genetic algorithm (GA) and particle swarm 
optimization (PSO) approach known as hybrid GA–PSO. This approach identifies 
optimal locations for EVCSs integrated with photovoltaics within the network. Sub-
sequently, the employment of individual GA and PSO algorithms to optimize EVCS 
placement focuses on minimizing power loss and enhancing voltage. The effectiveness 
of the hybrid GA–PSO algorithm is compared to that of separate GA and PSO methods. 
Extensive simulations using the IEEE 33-node test feeders validate the proposed tech-
niques, demonstrating the usefulness of the hybrid GA–PSO algorithm in identifying 
optimal EVCS placement within each zone. The results also highlight the advantages 
and novelty of hybrid GA–PSO in achieving optimal EVCS placement with stochasti-
cally sized and distributed photovoltaic in an RDNS.
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Introduction
The increasing interest in using electric vehicles (EVs) for transportation, particularly for 
passenger transport, has led to significant developments in EV production and manu-
facturing lines by carmakers and automobile manufacturers to meet the demand in vari-
ous countries. This growth has been supported by government legislation related to EVs. 
A positive correlation has been observed between EV usage and environmental bene-
fits, such as reduced air pollution levels [1] and lower carbon emissions [2]. The pro-
motion of electric vehicles aligns with the goal of preserving the natural environment 
over time. Unlike traditional combustion engine vehicles that rely on fuel consumption 
and emit carbon dioxide [3], the advancements in power, power electronic components, 
and material science technology have sparked interest in different types of EV technol-
ogy. The successful integration of EV charging stations into the power grid is crucial 
for achieving system stability and accommodating the load changes associated with EV 
charging.

EVs are gradually rendering conventional automobiles obsolete [4]. However, the ques-
tion of charging infrastructure poses a level of uncertainty and concern among many 
people. Unlike stationary electrical equipment, EVs are primarily in motion. Therefore, 
it is crucial to have accessible charging facilities available after each use, enabling EVs to 
be utilized anywhere and at any time. Consequently, research focuses on various experi-
mental settings, including solid-state batteries, magnetic batteries, and lithium batteries, 
which are integral to battery technology [5]. Battery technology plays a critical role in 
determining the size and range of EVs. Consequently, the development of batteries pre-
sents its own challenges, with extensive research efforts dedicated to reducing charging 
time and increasing power density. Additionally, motor technology in electric vehicles 
plays a vital role in their traction driving capabilities, and its efficiency is determined by 
the amount of energy the motor can draw from the EV’s batteries [6]. Battery technology 
and motor technology are distinct yet interconnected fields of study, often explored in 
conjunction with materials technology.

Researchers have also examined the impact of EVs on the electrical power system, spe-
cifically power system losses, node voltage stability, power system oscillations, energy 
demand response, and optimal charging station deployment [7, 8]. Due to the influence 
of EVs on electricity consumption, optimization strategies are necessary to replicate 
ideal conditions and enable effective energy planning to ensure grid reliability. Conse-
quently, energy management sources need to be investigated alongside the selection of 
efficient electric car chargers to effectively utilize different energy sources during the 
EV charging process. Currently, photovoltaic (PV) power plants are receiving signifi-
cant attention as potential energy sources [9]. PV systems can be integrated into radial 
distribution network systems (RDNSs) to reduce overall power losses in the electrical 
power system [10]. A step-down power transformer is utilized to connect the EV charg-
ing equipment to the RDNS, enabling the high voltage from the system to be adjusted to 
a manageable level. Additionally, charging EVs at home typically involves connecting the 
power cord to a home charger.

The electric vehicle load is a major consumer of energy from the grid. Various load 
models, such as power constant (P) load, current constant (I) load, polynomial load, 
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Z–I–P load, and voltage source converter models, have been defined to represent elec-
tric vehicle loads [11]. Large-scale EV charging stations (EVCSs) significantly impact 
the electrical power grid, necessitating grid enhancements [11]. Several studies have 
demonstrated the adaptability of the electrical power system to address these chal-
lenges. Genetic algorithms (GAs) are widely used optimization techniques for effec-
tively allocating distributed generators (DGs) [12, 13]. Researchers in [14] and [15] have, 
respectively, proposed single- and multi-objective optimization strategies using quan-
tum particle swarm optimization (PSO) for grid frequency control and GA and PSO for 
determining the size and location of multiple DGs within RDNS, considering different 
load models. Another study proposed a hybrid bacterial foraging optimization algorithm 
and PSO (BFOA–PSO) approach to optimize the placement of EVCSs in distribution 
networks with high penetration of rooftop PV systems [16]. The optimization problem 
considers minimizing power losses, voltage deviation, and maximizing voltage stability. 
Consideration of the inductive nature of PV converters was also addressed in another 
study using a hybrid GA–PSO approach for optimal allocation of plug-in EV charging 
stations (PEVCS) in distribution networks with high volumes of distributed genera-
tion [17]. These studies highlight the importance of load models and the integration of 
renewable energy sources in determining optimal EVCS placements. The author [16, 17] 
had considered the distribution network to be a module, and EVCS could be placed any-
where without considering the sparsity of the load distribution.

This paper introduces a novel strategy for the optimal placement of EVCSs and distrib-
uted PV systems in an RDNS. The strategy involves dividing the RDNS into zones using 
improved spectral clustering and utilizing individual GA, PSO, and hybrid GA–PSO 
approaches to determine optimal EVCS placements within each zone. Separate GA, 
PSO, and hybrid GA–PSO techniques are employed to size and position the distributed 
PV systems, assessing their impact on power loss and voltage dips caused by EVCSs. 
The goal is to identify the most cost-effective settings for deploying EVCSs in an RDNS 
with randomly placed PV systems, utilizing the hybrid GA–PSO approach to leverage 
the strengths of both GA and PSO methods. The paper also presents an introduction 
to the current state of electric vehicles (EVs) and their impact on the environment and 
transportation. It discusses the challenges associated with EV charging infrastructure 
and the advancements in battery and motor technologies. It also highlights the research 
efforts focused on the impact of EVs on the electrical power system and the optimization 
strategies for efficient energy management and grid reliability. Overall, the paper aims 
to provide insights into the challenges and developments in EV technology, EV charg-
ing infrastructure, and optimization strategies for efficient energy management in the 
context of EVs.

The paper is organized as follows: It formulates the mathematical model and optimiza-
tion methods for selecting optimal EVCS locations in network zones with distributed 
PV systems. It then presents simulation results of optimal EVCS and PV placements 
obtained using PSO, GA, and hybrid GA–PSO optimization techniques. The paper 
concludes with a final section summarizing the findings and potential for the proposed 
method.
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Methodology
The methodology used in this research focuses on minimizing the impact of increased 
penetration of EVCSs and distributed generators (PV systems) on the performance of 
the distribution system. Traditional load flow methods like Newton–Raphson and 
Guass–Seidel are not suitable for accurate results. Instead, an efficient load flow method 
based on the forward–backward approach, as described in [18], is employed. The study 
aims to achieve three objectives: minimizing power losses, reducing voltage variation, 
and improving the voltage stability index of the network.

Distribution network modeling

Electric vehicles are direct current consumption load that is charged through the grid. 
Based on certain conditions of the grid, the EV can also be discharged through the grid. 
However just the former has been considered in this paper, and thus the electric charg-
ing stations are seen as direct current loads to the grid’s RDNS. The IEEE 33-bus system 
is the selected use-case network in this study. The RDNS is broken up into zones so that 
each zone can have an EVCS with a number of charging spots to serve its own needs. 
This RDNS is large and balanced at a voltage of 12.66 kV as shown in Fig. 1.

Modeling of the number of EVs and charger type

The number of homes in the research region must be known in order to get an accurate 
estimate of the total EV population in each area. In this work, each family has been con-
strained to have a total apparent power ( S′ ) requirement of 12.7kVA. Based on this con-
sideration, the total number of homes ( N  ) in each zone can be estimated using Eq. (1), 
assuming a load factor of unity [17].

Fig. 1 Test bus system segmented into seven zones



Page 5 of 22Rene and Fokui  Journal of Electrical Systems and Inf Technol            (2024) 11:1  

where S is the total apparent power in the study area. The number of homes and EVs in 
each zone is shown in Table 1 after the calculation. The RDNS has been thought of as 
a residential and commercial network with residential loads accounting for 80% of the 
total load in each zone.

Equation  (2) can be used to figure out the number of EVs, n if the rate of EV inte-
gration (%EV) is known. A percentage of EV penetration of 30% maximum for the test 
bus network has been considered. Using Eq. (2), the total number of EVs found in the 
research area is 103.

This study looks at five different EV models. The features and charger specifications 
of the five different types of EVs are listed in Table  2, along with the corresponding 
amounts. Both the level 1 and level 2 type chargers are well-suited with these types of 
EVs.

(1)N =
S

S′

(2)%EV =
n

N
∗ 100

Table 1 Estimated number of homes and EVs in each zone

Zones Total power of 
each zone, S-kVA

Power demand by 
each home, S-kVA

No. of homes, N Power demand of 
residential load

No. of EVs in 
each zone, n

1 487.6474 12.7 39 390.1179 11

2 695.4495 12.7 55 556.3596 16

3 494.4947 12.7 39 395.5958 11

4 393.9543 12.7 31 315.1634 9

5 1033.1505 12.7 82 826.5204 24

6 331.0589 12.7 27 264.8471 8

7 1020.0490 12.7 81 816.0392 24

Total 
number of 
EVs

103

Table 2 A selection of EVs and their charging systems features [16]

EV model EV specification Charging type

Level 1 (11 kW) Level 2 (22 kW)

Charging time Quantity Charging time Quantity

Nissan Leaf 2018 36 kWh, 220 km 11 h30 m 10 6 h30 m 9

Renault Zoe ZE50 Ri10 53 kWh, 3 15 km 5 h45 m 15 3 h 11

Honda e 28.5 kWh, 170 km 9 h15 m 12 5 h15 m 9

MG ZS EV 42.5 kWh, 220 km 13 h30 m 7 7 h45 m 9

Mazda MX 30 30 kWh, 170 km 9 h 45m 12 5 h30 m 9

Total number of EVs 56 47
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Number of EV charging points and EVCS power capacity

Seven EVCSs are placed around the RDNS divided into zones in a way that stores energy 
for the 103 EVs. In this study, both level 1 and level 2 chargers with a specific number of 
charging points (CPs) have been considered, which are listed in Table 3, and were used. 
At a power factor of 0.90, EVCSs that have constant outputs are used. This had been 
thought of as a way to deal with the fact that the converters at the CPs use a lot of reac-
tive power. The following equation defines how the EVCS’ reactive power QEVCS is com-
puted for a chosen active power PEVCS for a given power factor angle ϕEVCS

Modeling of distributed randomly sized PVs

In order to integrate the reactive power injection capabilities of the voltage source inverters 
utilized in grid-connected PV systems, the PV systems are modeled as negative loads in this 
work. PV systems have a penetration rate of 35%. Although there are numerous methods 
for estimating PV penetration levels, the percentage of PV penetration may be derived as 
the ratio [16]:

• the ratio of total PV system output to total generation
• Peak PV capacity to peak apparent power of loads
• PV-rated power to the active power demand of loads

The last option for calculating PV penetration percentage is used to compute the total 
PV-rated power needed at 35% penetration, which is 1105.17 kW for the test network given 
that the total load demand of the network is 3157.75 kW [19]. As a result, with a power fac-
tor of 0.95, the PV systems inject 363.25 kVAR into the test network. The equation below 
defines how the PV reactive power QPV injected is computed from its active power PPV for 
a given power factor angle ϕPV

The dispersed PV systems are randomly sized with each PV system made up of 1 kW PV 
modules. This allows for the PV systems to be arbitrarily sized and located over the net-
work. The random function generates random nodes, which are used to allocate the 1 kW 
PV modules to be installed on each target node. Using Eq. (5), the overall PV power rating 
throughout the network is made to be 1105.17 kW.

(3)QEVCS = PEVCS ∗ tan ϕEVCS

(4)QPV = PPV ∗ tan ϕPV

Table 3 EVCSs with both level 1 and level 2 CPs

Charger type Rating CPs 
P-kW

No. of CPs 
per EVCS

Rating of 
EVCS, P-W

Rating of 
EVCS, Q-kVAR

No. of EVCS Total rating 
of EVCS, 
S-kVA

Level 1 11 28 308 149.17 4 1368.89

Level 2 22 25 550 266.38 3 1833.34
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where nk is the number of PV modules on node k , k is the load node number, with k = 2 
being the first load node in the network, rand(k) is a random generator responsible for 
selecting random values between 0 and 1 and allocating them to node k ,  and NT is a 
cautiously chosen number such that the total PV capacity in the network is constant. 
From Eq. (6), the PV capacity for each load node can be calculated.

where Ppvk denotes the PV capacity at node k and Ppvr denotes the rating (1 kW) of a 
single PV. As a result, the total power rating PpvT of distributed PV systems is given by 
Eq. (7).

EVCS location and placement

When connecting EVCSs to an RDNS, the operational conditions undergo significant 
changes compared to the base case configuration. Planning EVCS installations requires 
careful consideration of various factors, including the most effective techniques, the 
number and capacity of EVCS units, optimal installation locations, and appropriate con-
nection types.

It is crucial to exercise caution when determining the best EVCS locations in a distri-
bution network. Suboptimal placements can lead to increased system losses and higher 
costs. Studies indicate that placing EVCSs in unsuitable or inappropriate locations can 
result in even higher system losses than those already present in the network [20]. The 
challenge at hand involves strategically positioning seven EVCSs within the IEEE 33-bus 
system, which is populated with randomly sized and distributed PV systems accounting 
for 35% of the total load demand.

Problem formulation

Deploying EVCS in an RDNS has several benefits, including reduced line loss, improved 
voltage stability, enhanced network reliability, and increased security. However, deter-
mining the optimal placement of EVCS involves solving a nonlinear optimization prob-
lem with objective functions and constraints related to power balance, voltage, and 
current. The proposed solution aims to minimize peak load power loss and voltage vari-
ation while enhancing voltage stability in the RDNS. Thus, the multi-objective function 
is mathematically expressed in this case as follows:

(5)nk =
rand(k)

∑33
k=2 rand(k)

∗ NT

(6)Ppvk = nk ∗ Ppvr

(7)PpvT =

33
∑

k=2

Ppvk

(8)J̌∗ = Minimum
{

J̌1, J̌2

}
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where J̌1 and J̌2 correspond, respectively, to the total power loss and the voltage devia-
tion index. The following is a description of the mathematical equation that represents 
the multi-objective function.

(1) Modeling of the objective function

(i) Real and reactive power losses

By strategically placing EVCSs in the distribution network, instability caused by peak 
loading situations can be mitigated, ensuring that constraints are not violated. This 
optimal EVCS placement minimizes power loss while adhering to the limits of system 
constraints. The precise branch loss for the distribution system can be obtained using 
equation, [21] (7).

where SkW Loss
ik  and SkVAR Loss

ik  are the total real and reactive powers losses from bus i to 
bus k respectively, V̌i and V̌k , respectively, represent the voltage of bus i and k , Y̌ik and γik 
represent, respectively, the admittance and the admittance angle of the line between bus 
i and bus k . Therefore, the function for the minimum amount of total power loss is given 
as:

where n is the total number of buses in the network.

 (ii) Voltage deviation index (VDI)

The main focus is controlling the voltage profile of the RDNS when incorporating 
EVCSs. The voltage profile undergoes changes due to the inclusion of EVCSs in the 
distribution system. Each bus in the RDNS can be analyzed individually. To ensure 
voltage stability, it is important for the EVCS to minimize the voltage gap between the 
normal bus voltage and the rated bus voltage. Equation  (11) describes the equation 
for calculating the required voltage deviation, which represents the deviation of bus 
voltage magnitudes from the reference voltage magnitude [22].

where V̌j represents the voltage at bus j , V̌REF is the slack bus voltage and n represents 
the number of buses. In light of this, transforming Eqs. (10) and (11) into a minimization 
function results in the mathematical formulation of a multi-object function represented 
in Eq. (12)

(9)
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∑
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∑
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where β1 and β2 represent some hyperparameters to enhance the objective and they have 
been carefully chosen.

(2) Modeling constraints

(i) Equality constraints

The power requirement constraints in the system are determined by the power balance 
equation, which ensures that the power supplied by the EVCS meets both the system 
demand and internal losses. The equation for calculating the power balance can be 
derived from Eqs. (13) and (14) [17].

where PG and QG are the real and reactive power from the grid, PPV and QPV are the 
real and reactive power from the PV system, PL and QL are the real and reactive power 
demands, PEVCS and QEVCS are the real and reactive power demand by a single EVCS, 
and PLOSS and QLOSS are the real and reactive power losses.

 (ii) Inequality constraints

To ensure compliance with the distribution system’s limits, several factors need to be 
considered: The maximum power generated by the PV system should not surpass the 
permissible limits, voltage variation should be kept below 5%, and the number of charg-
ing points (CPs) and charging stations (CSs) should fall within the allowable minimum 
and maximum values.

• Voltage constraint: The voltage magnitude 
∣

∣

∣
V̌j

∣

∣

∣
 of each bus must adhere to predefined 

limits as specified by the following equation.

 where 
∣

∣

∣
V̌j

∣

∣

∣

m
 and 

∣

∣

∣
V̌j

∣

∣

∣

M
 are the voltage minimum and maximum at bus j.

• Voltage angle constraints: The voltage angle δj of each bus must fall within the prede-
fined limits defined by the following equation.

 where δmj  and δMj  are the minimum and maximum voltage angle at bus j.

(12)J̌∗ =
{

β1 ∗ J̌
∗
1 + β2 ∗ J̌

∗
2

}

(13)PG +
∑

PPV =
∑

PL +
∑

PEVCS +
∑

PLOSS

(14)QG +
∑

QPV =
∑

QL +
∑

QEVCS +
∑

QLOSS

∣

∣

∣
V̌j

∣

∣

∣

m
≤

∣

∣

∣
V̌j

∣

∣

∣
≤

∣

∣

∣
V̌j

∣

∣

∣

M
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∣
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V̌j
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∣
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δmj ≤ δj ≤ δMj
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• PV power constraints: The real power Ppvj and reactive power Qpvj limits of the PV 
system at bus j are primarily determined by the power factor (0.95) and the maxi-
mum permissible bus capacity.

 where Pm
pvj

 and PM
pvj

 define the PV real power minimum and maximum at bus j and 

Qm
pvj

 and QM
pvj

 define the PV reactive power minimum and maximum at bus j.

• Current constraint: The distribution feeder current limit Irated should be kept within 
the rated limit.

 where IMrated is the maximum rating of the distribution feeder.
• Charging power constraints: The charging power PEVCSj of each EVCS at bus j must 

be within predefined limits.

 where Pm
EVCSj

 and PM
EVCSj

 define the EVCS real power minimum and maximum at bus 

j and Qm
EVCSj

 and QM
EVCSj

 define the PV reactive power minimum and maximum at 

bus j.
• Charging point constraints: The number of charging points CPj of each EVCS at bus j 

must be within specified margin.

 where CPmin
j  and CPmax

j  are the minimum and maximum number of charging points 
at bus j.

• Charging station constraints: The number of EVCSs must be within the margins.

 where CSmin and CSmax are the minimum and maximum number of charging sta-
tions in the distribution network.

• Line loading constraints: The rating S of the distribution line must be respected.

 where SM is the maximum rating of the distribution line.

Study of algorithm

Optimal placement of EVCSs with random penetration of PV systems is a multi-objec-
tive constrained optimization problem. This study solves EVCS placement using a 
unique GA–PSO to demonstrate the effectiveness of hybrid GA–PSO over individual 
GA and PSO. In order to assess how well the proposed algorithms address the problem 
of EVCS location and placement in a segmented RDNS, the IEEE 33-bus test system has 

Pm
pvj

≤ Ppvj ≤ PM
pvj

and Qm
pvj

≤ Qpvj ≤ QM
pvj

Irated ≤ IMrated

Pm
EVCSj

≤ PEVCSj ≤ PM
EVCSj

and Qm
EVCSi

≤ QEVCSi ≤ QM
EVCSi

.

CPmin
j ≤ CPj ≤ CPmax

j

CSmin ≤ CS ≤ CSmax

S ≤ SM
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been has been used. The 33-bus system has 32 branches and can handle a combined 
capacity of 3.72 MW and 2.30 MVAR. The line and load data for the 33-bus test system 
are available in [19].

(a) Particle swarm optimization (PSO)

PSO (particle swarm optimization) is an artificial intelligence technique used to solve 
problems in n-dimensional spaces. It leverages individual and collective experiences to 
guide decision-making. PSO was developed by James Kennedy and Russell Eberhart in 
1995, inspired by the behavior of birds in groups studied by Frank Heppner [23, 24]. 
In PSO, a swarm of randomly selected agents/particles represents potential solutions. 
Each particle has a random speed and explores the search space. They remember their 
best position ( XB ) and associated fitness. The swarm’s overall best position is called the 
global best ( XG ). In an n-dimensional space, each particle’s position is represented as 
Xk = [xk1, xk2, ..., xkn] . The velocity of particle k is denoted as Xk = [xk1, xk2, ..., xkn] . The 
particles’ movement is governed by velocity and position equations at the T th iteration 
defined by Eqs. (15) and (16), respectively [14].

where k = 1, 2, ...,Np , where Np denotes the swarm size; ωT denotes inertia weight at 
iteration T  ; and C1 and C2 are two positive constants denoted as the cognitive and social 
parameters, respectively; and RT

1  and RT
2  are random values uniformly distributed in a 

range [0, 1]. At each iteration, Eq. (15) is used to calculate the kth particle’s new velocity, 
VT+1
k  , while Eq. (16) calculates the kth particle’s new location, XT+1

k  by adding its new 
velocity, VT+1

k  to its previous position, XT
k

(b) Genetic algorithm (GA)

Genetic algorithms (GAs) are a prominent metaheuristic technique for solving highly 
nonlinear computational problems [25]. They are inspired by natural selection and 
genetics, operating on string structures called chromosomes. GAs develop an initial 
population into a population of high-quality individuals representing solutions to 
the problem. The fitness function evaluates the quality of each individual based on a 
specific criterion. Selection, crossover, and mutation are the main genetic operators 
applied to individuals in each generation. Selection chooses elite individuals as par-
ents using fitness values; crossover combines genetic material from parents to pro-
duce offspring, and mutation introduces random modifications to the chromosome 
[26]. In summary, GA is a trending optimization algorithm that uses selection, cross-
over, and mutation to evolve a population toward high-quality solutions.

A number of papers on the hybridization of PSO with other heuristic optimiza-
tion approaches have been published; notably, the hybrid approach of PSACO (parti-
cle swarm ant colony optimization) is suggested by Sheloker et al. [27] for extremely 

(15)VT+1
k = ωTVT

k + C1R
T
1

(

XBk − XT
k

)

+ C2R
T
2

(

XG − XT
k

)

(16)XT+1
k = XT

k + VT+1
k
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nonconvex optimization problems. Another is the paper published in 2008 [28] by 
Kao and Zahara for global optimization of multimodal functions which implemented 
GA with PSO as a hybrid approach. However, the application of the GA–PSO hybrid 
model in advanced optimization and control strategies is currently limited. Therefore, 
the focus of the present study is to develop an optimal placement technique using a 
hybrid GA–PSO model. This technique aims to place EVCSs in an RDNS divided into 
zones.

(c) Hybrid GA–PSO algorithm

According to the literature [29, 30], most evolutionary approaches use the following 
procedure:

1. An initial population is generated at random.
2. Determine the fitness value for each particle based on the best distance.
3. Fitness values define population reproduction.
4. Stop if optimum solutions are discovered. Otherwise, create a new generation of 

population and go to 2.

PSO and GA share some similarities in their processes. Both start with a randomly 
generated population and use fitness values to evaluate the population. They also make 
modifications to the population and apply random procedures to search for the best 
solution. However, neither approach guarantees success. One key difference is that PSO 
lacks genetic operators like crossover and mutation. In PSO, particles update themselves 
based on their intrinsic velocity, while GA uses chromosomes to transfer information. 
PSO tends to converge to the optimal solution more quickly than GA, even in the local 
version.

The proposed hybrid GA–PSO approach aims to combine the strengths of both algo-
rithms. It merges the two algorithms, with the optimal solution derived from PSO fur-
ther improved by GA through the use of selection, crossover, and mutation operators. 
This hybrid approach aims to increase exploitation using PSO and exploration using GA, 
resulting in improved performance. The flowchart diagram of the hybrid GA–PSO is 
seen in Fig. 2.

Simulation

In some cases, users are not only interested in improving the performance of a model 
but also in reducing the associated expenses related to its features [31]. The cost of a fea-
ture can be measured in terms of economy, time, or other resources required to obtain 
objective values [32, 33]. Additionally, computational issues can also contribute to the 
cost [34]. In this study, a single fitness function is used to minimize both power loss and 
voltage deviation. The simulation settings for the GA–PSO algorithm are presented in 
Table 4. MATLAB is employed for conducting simulations under high-load conditions, 
where all EVCSs are connected and charging, and PV systems are operating at their peak 
output. The test network used is the 33-bus test feeder, which is segmented into zones. 
The GA–PSO algorithm is utilized to determine the optimal placement of an EVCS in 
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Fig. 2 Flowchart of hybrid GA-PSO

Table 4 GA–PSO parameters

Parameter Symbol Value

Population size nPOP 30

Number of iterations T 20

Inertia coefficient ω 1

Personal learning coefficient C1 2

Social learning coefficient C2 2

Crossover and mutation probabilities Pc, pm 1, 0.02



Page 14 of 22Rene and Fokui  Journal of Electrical Systems and Inf Technol            (2024) 11:1 

each zone. The chosen parameters are carefully selected to ensure both speed and accu-
racy in the solution process. The proposed technique has been designed to provide an 
improved version of the findings in [16, 17].

Results and discussion
Because the study is concerned with randomly sized and placed PV systems, four cases 
of stochastically sized and sited PV systems are taken into account for optimal EVCS 
placement. The EVCSs are optimally placed in each case using the hybrid GA–PSO opti-
mization technique, and the results are recorded. Furthermore, the EVCSs are optimally 
placed using GA and PSO separately. This is required to validate the efficacy of the pro-
posed hybrid GA–PSO compared to individual GA and PSO used in locating the best 

Table 5 EVCSs and randomly sized and distributed PVs best locations with hybrid GA–PSO

Charger 
type

Zones No. of executions of algorithm

Eexcution-1 Eexcution-2 Eexcution-3 Eexcution-4

EVCS 
location

PV 
location

EVCS 
location

PV 
location

EVCS 
location

PV 
location

EVCSs 
location

PV 
location

Level 1 Zone-1 5 4 3 3 4 4

Zone-2 9 10,12 9 8,19,11 8 10,11,12 8 8,10,11,12

Zone-3 15 14,15,18 15 13,15,16 15 13,15,18 16 14,16,18

Zone-4 22 21 21 22

Level 2 Zone-5 25 24 25 24

Zone-6 27 27,28 27 26,28 28 27 29 27,29

Zone-7 32 31,32,33 33 31,32,33 33 30,32,33 33 31,32
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Fig. 3 Voltage profile under best test cases for PSO, GA, and GA–PSO
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locations for the EVCSs in the distribution network with randomly sized and placed dis-
tributed PV systems.

Optimal placement of EVCSs and penetrated PV systems

Table 5 presents the optimal allocation of EVCSs for each zone and the randomly dis-
tributed photovoltaic systems in each simulation scenario. The hybrid GA–PSO algo-
rithm was employed to test the placement of stochastically sized and located PV systems 
under various execution cases. The table illustrates the best positions and PV sites deter-
mined by the GA–PSO algorithm for EVCSs in each case.

In the subsequent sections, we will examine the impact of integrating EVCSs into the 
test network with distributed PV systems and how this integration has influenced the 
overall network performance.

Bus voltage profile

In Fig. 3, the network voltage profiles for all simulation conditions are given. It has been 
found that the random insertion of PV systems into the RDNS at a penetration level of 
35% leads to a general improvement in the voltage profile of the RDNS from the base 
case.

The improvement in network performance can be observed across all three algorithms 
when considering random penetration of PV systems. Linking the PV systems at load 
centers has led to an enhancement in the network’s voltage profile. This improvement 
is attributed to the PV systems being connected in close proximity to the load demand, 
reducing reliance on the grid. To maintain the improved voltage profile, it is impor-
tant to strategically distribute the EVCSs in a manner that minimizes disruptions. The 
GA–PSO algorithm identifies optimal locations for EVCSs in each zone, ensuring that 
the increased loads from EVCSs do not significantly alter the voltage levels at network 
nodes. This holds true for all four cases, considering random sizing and placement of PV 
systems.

Comparing the simulation results, the hybrid GA–PSO approach outperforms the 
individual GA and PSO algorithms. The minimum voltage achieved by hybrid GA–
PSO is 0.92511 p.u., while the individual GA and PSO algorithms yield lower values of 

Table 6 Compared network’s voltage when EVCSs and PVs are placed using PSO, GA, and hybrid 
GA–PSO

Bold value indicates the best minimum voltage values for each execution considering PSO, GA, GA–PSO and also the overall 
best voltage minimum value for each PSO, GA, GA–PSO

Base case Minimum node voltage under different executions (pu)

Vmin: 0.90378 PSO GA GA–PSO

Vmax: 1 Vmin Vmax Vmin Vmax Vmin Vmax

Execution-1 0.90792 1 0.89979 1 0.92411 1

Execution-2 0.92258 1 0.92814 1 0.92511 1

Execution-3 0.92233 1 0.91695 1 0.92214 1

Execution-4 0.9214 1 0.89494 1 0.92278 1

Min voltage 0.90792 0.89494 0.92214
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0.89494 p.u. and 0.92233 p.u., respectively. These findings highlight the superior per-
formance of the hybrid GA–PSO algorithm in maintaining a favorable voltage profile 
within the network.

Based on the findings presented in Table  6, it is evident that the voltage profile of 
the network significantly improves when EVCSs are placed using the hybrid GA–PSO 
approach compared to the individual GA and PSO algorithm. Across all four execu-
tion instances, the network demonstrates better voltage performance when the EVCSs 
are positioned using the hybrid GA–PSO approach. Specifically, when the suggested 
hybrid GA–PSO approach is utilized for EVCS placement, the minimum node voltage is 
recorded at 0.92214 p.u. This value is higher than the minimum node voltages achieved 
using the GA (0.89494 p.u.) and the PSO algorithm (0.90792 p.u.). These results high-
light the superior effectiveness of the hybrid GA–PSO approach in maintaining higher 
voltage levels within the network.
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Fig. 4 Percentage voltage deviation index

Table 7 Compared network’s VDI when EVCSs and random PVs are placed using PSO, GA, and 
hybrid GA–PSO

Base case Voltage deviation index under different executions (%)

%VDI: 13.3808 PSO GA GA_PSO

Execution-1 6.1181 9.7866 6.1086

Execution-2 7.636 7.0918 6.1221

Execution-3 6.7933 9.7066 5.6289

Execution-4 7.1577 10.2726 5.4867

Min VDI 6.1181 7.0918 5.4867
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Voltage deviation index (VDI)

The voltage deviation index (VDI) serves as an indicator of the variation between a 
bus voltage and the reference voltage, typically set at 1 per unit (p.u.). A lower VDI 
value indicates that the bus voltage is closer to the reference voltage, while a higher 
VDI signifies a greater deviation from the reference voltage and potential concerns 
regarding voltage stability. In all execution instances and across all three algorithms, 
a significant reduction in VDI is observed with a 35% penetration of PV systems. 
This indicates that the bus voltages are closer to the reference voltage, indicating 
improved voltage stability. Figure  4 demonstrates that the introduction of EVCSs 
has minimal impact on the network’s VDI in all execution instances. However, the 
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installation of EVCSs resulted in a rise in network VDI since the EVCS acts as addi-
tional loads to the network.

When the EVCSs are allocated using the hybrid GA–PSO, the best case of the 
network’s percentage VDI is 5.4867%, as seen in Table 7 compared to GA and PSO 
that yielded 7.0918% and 6.11815% as their individual best values as percentage 
VDI. This indicates that utilizing hybridization procedures of GA–PSO to place the 
EVCSs resulted in an improved network voltage profile which is better than when 
GA and PSO are used alone. As a consequence of using the hybrid strategy to install 
the EVCSs, the network has higher-voltage stability.

Network real and reactive power losses

The influence of PV systems on total real and reactive power losses is evident in Figs. 5, 6 
and 7. In comparison with the original base case values of 210.99 kW for total real power 
loss and 143.123 kVar for total reactive power loss, the utilization of PV systems results 
in a significant reduction in both parameters across all three algorithms. However, the 
strategic placement of EVCSs does lead to a slight increase in total real and reactive 
power losses. This can be attributed to the additional stress exerted on the network by 
the EVCSs. Nevertheless, when considering the optimal scenario outlined in Table 8, it is 
noteworthy that the real and reactive power losses induced by the EVCSs remain lower 
than those observed in the base scenario for all algorithms.

Table  8 reveals that the network’s total real and reactive power losses differ when 
EVCSs are placed using the hybrid GA–PSO technique compared to the separate PSO 
and GA techniques. Specifically, the total real and reactive power losses incurred when 
utilizing the proposed GA–PSO technique for EVCS placement are consistently lower 
across all execution instances compared to the individual GA and PSO approaches.

Validation of hybrid GA–PSO over separate GA and PSO

The optimal placement of EVCSs in a radial distribution network, considering randomly 
sized and placed distributed PV systems, demonstrates the superiority of the hybrid 
GA–PSO technique over individual GA and PSO techniques. Comparative analysis of 
Tables 6, 7, and 8, which examine the minimum and maximum bus voltages, VDI, and 
total real and reactive power losses, clearly illustrates that the proposed GA–PSO tech-
nique consistently achieves superior results compared to using GA or PSO individually. 

Table 8 Compared network’s power losses when EVCSs and PVs are placed using PSO, GA, and 
hybrid GA–PSO

Base case Total power losses under different executions

P (kW): 210.9876 PSO GA GA–PSO

Q (kVar): 143.1284 P (kW) Q (kVar) P (kW) Q (kVar) P (kW) Q (kVar)

Execution-1 242.8084 162.5749 252.9438 174.4537 207.7332 136.2307

Execution-2 208.1206 136.4967 200.2578 131.1239 192.4145 125.3715

Execution-3 241.8629 165.9052 221.7523 144.6374 216.4107 142.2413

Execution-4 225.2834 153.7716 269.4463 183.6445 216.7633 141.4762

Minimum losses 208.1206 136.4967 200.2578 131.1239 192.4145 125.3715
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Notably, previous studies such as [16, 17] have addressed similar problems but with dif-
ferent considerations.

In [16], the problem of EVCS placement in a distribution network with randomly 
placed rooftop PVs was tackled using the hybrid BFOA-PSO technique. However, this 
approach did not account for the reactive power influence of PV inverters, which affects 
voltage and power losses. Additionally, the distribution network’s load sparsity was not 
considered, potentially leading to local convergence of multiple EVCSs at specific buses 
during implementation. In [17], the authors employed the hybrid GA–PSO technique, 
considering the reactive nature of PV inverters and their impact on the distribution net-
work. Nevertheless, the load density of different parts of the network was not taken into 
account, potentially resulting in local convergence of multiple EVCSs at specific buses 
during implementation.

The simulation results highlight the effectiveness of the hybrid GA–PSO technique as 
an optimization strategy for EVCS deployment in existing distribution networks with 
randomly scattered PV systems. This technique proves valuable for distribution service 
operators aiming to provide cost-effective and reliable services while maintaining appro-
priate power quality and voltage within specified limits. Furthermore, the hybrid GA–
PSO technique’s utility is evident in both current and future contexts. By leveraging the 
strengths of one algorithm to address the weaknesses of the other, the hybrid GA–PSO 
technique demonstrates its capability. The comparative analysis of results obtained from 
GA, PSO, and hybrid GA–PSO techniques provides valuable insights into their relative 
effectiveness as well as the edge that a hybrid metaheuristic technique has over an indi-
vidual optimization. This research contributes to the understanding of EV utilization 
in radial distribution networks, offering practical guidance for optimizing EVCS place-
ment, reducing power losses, and improving voltage performance. The strength of the 
presented results is further supported by referencing related works in the current litera-
ture, highlighting the advancements made in the field.

Conclusion
In summary, the rapid adoption of EVs as a means to reduce greenhouse gas emissions 
in the transportation industry necessitates the swift upgrading of distribution net-
works to support a large number of charging stations. The integration of EV technology 
also requires measures to address resource allocation challenges. This study employed 
metaheuristic techniques, including GA, PSO, and hybrid GA–PSO, to optimize the 
placement of EV charging stations (EVCSs) in a network with randomly sized and dis-
tributed PV systems. The objective function focused on minimizing real and reactive 
power losses and voltage deviation index. Comparative analysis revealed that the hybrid 
GA–PSO approach outperformed individual GA and PSO methods, achieving the low-
est values of real and reactive power losses and exhibiting robustness in affecting the 
voltage profile. The optimal node placement for EVCSs in each zone was determined 
using the hybrid GA–PSO technique.

Simulation results demonstrated the effectiveness of the hybrid GA–PSO in locat-
ing suitable nodes for EVCS installation, resulting in improved real and reactive power 
losses, minimum network node voltage, and voltage deviation index compared to indi-
vidual GA and PSO approaches. The comparative findings of the optimization methods 
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revealed that the hybrid GA–PSO offered the lowest value of real and reactive power 
losses, which were 192.4145 kW and 125.3715kVar, respectively, compared to GA’s real 
and reactive power losses of 200.2578 kW and 131.1239kVar, respectively, and PSO’s real 
and reactive power losses of 208.1206 kW 136.4967kVar. Hybrid GA–PSO also showed 
superiority by affecting the voltage profile by a percentage VDI of 5.4867% on EVCS 
integration compared to a percentage VDI of 7.0918% and 6.1181% of GA and PSO, 
respectively. The hybrid GA–PSO technique was used to find the optimal solution as it 
was able to place four level 1 EV chargers at bus numbers 5, 9, 15, and 22 (respectively, in 
zone 1, zone 2, zone 3, and zone 4) and three level 2 EV chargers at bus number 25, 27, 
32 (respectively, for zone 5, zone 6, and zone 7).

The study’s findings contribute valuable insights and guidance for the seamless integra-
tion of EVs into radial distribution network systems that are segmented into zones. The 
hybrid GA–PSO approach employed in this research provides a powerful optimization 
framework for addressing the placement problem of EVCSs. By combining the strengths 
of GA and PSO, the hybrid approach enables a balance between exploration and exploi-
tation, leading to enhanced performance in finding optimal solutions. The study’s out-
comes offer practical implications for policymakers, system planners, and researchers 
involved in the efficient deployment and management of EV charging infrastructure 
within community-based distribution networks. In future research, an important aspect 
will be the consideration of factors such as battery charge levels and the intermittent 
behavior of distributed PV systems. By accounting for battery charge levels, the research 
will be aimed at ensuring the efficient utilization of available energy resources and man-
aging the charging demands of EVs effectively as the current work fails to take this in to 
account. Additionally, the intermittent nature of distributed PV systems will be taken 
into account to leverage renewable energy sources and maximize their integration with 
the EV charging infrastructure since this work had assumed the PVs were operation at 
their peaks.
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