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Abstract 

Detection of eye movement types whether the movement of the eye itself or blink-
ing has attracted a lot of recent research. In this paper, one method to detect the type 
of wink or blink produced by the eye is scrutinized and another method is proposed. 
We discuss what statistical analysis can teach us about detection of eye movement 
and propose a method based on long short-term memory (LSTM) networks to detect 
those types. The statistical analysis is composed of two main steps, namely calcula-
tion of the first derivative followed by a digitization step. According to the values 
of the digitized curve and the duration of the signal, the type of the signal is detected. 
The success rate reached 86.6% in detection of the movement of the eye when those 
volunteers are not trained on using our system. However, when they are trained, 
the detection success rate reached 93.3%. The statistical analysis succeeds in achieving 
detection of all types of eye movement except one type which is the non-intentional 
blinking. Although rate of success achieved is high, but as the number of people 
using this system increases, the error in detection increases that is because it is fixed 
and not adaptive to changes. However; we learnt from statistical analysis that the first 
derivative is a very important feature to classify the type of an EOG signal. Next, we pro-
pose using the LSTM network to classify EOG signals. The effect of using the first deriva-
tive as a feature for identifying the type of EOG signals is discussed. The LSTM algorithm 
succeeds in detecting the type of EOG signals with a percentage equal to 92% for all 
types of eye movement.

Keywords:  Electrooculography signal, Human computer interface, Signal duration, 
Eye muscle motion, Feature extraction

Introduction
Electro-oculogram (EOG) signals are the electrical signals produced by the muscles of 
the eye. Due to some illnesses, some humans can only interact with the environment 
around them through their eyes [1]. Electric signals generated from their eye movement 
need to be recorded using special sensors. The movement of the eye becomes the only 
possible way for them to describe their needs and requirements [1]. Classification meth-
ods are used to classify the signals measured from the movements of the eyes.

In research, EOG are collected from people to detect mainly three types of human 
states. The first state is to detect the driver Consciousness level. Second is to detect eye 
movement types whether the motion of the eye itself or blinking detection. The third is 
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to detect the activities which humans are performing from the signals of the eye. In the 
following paragraphs, we introduce the different research papers which are recently pub-
lished and are discussing these three types of human states.

In this paragraph, three papers are illustrated which discuss how to detect the state 
of the brain for drivers. Being absent minded or sleepy during driving is a problem that 
can cause car crashes [2]. In an attempt to solve this problem, Zhang et al. [2] proposes a 
system, which is dependent on electric signals coming out of the eyes and brain to detect 
the status of a driver. They use a deep long short-term memory (LSTM) network to build 
their model. The paper states that the compared system outperforms other proposed 
systems [2]. In another paper, Electro-encephalogram (EEG) and EOG signal are used to 
detect the attention of a driver to driving. Wu et al. [3] proposed a double-layered neural 
network with sub-network nodes (DNNSNs) to design their model. Their experimental 
results show that the proposed model outperforms previous models due to the infor-
mation obtained from EOG and EEG which complement each other to produce better 
performance [3]. Song et al. [4] investigates the relationship between the electric signals 
produced from the eye and the physical and mental state of the body. A relation is found 
when the average, variance, standard deviation and variation coefficient were used to 
describe the duration of the eye blink [4]. Accordingly, the status of the human body 
whether he/she has a high load of work, mentally tired, physically tired or not is defined 
to high degree of accuracy [4].

In the next lines, few papers which discuss how to detect the motion of the eye or 
blinking for humans are illustrated. Aungsakun et al. [5] discuss the use of eye move-
ment as a method for Human Computer Interface. The eye applies eight types of move-
ments that are discussed. Usakli et  al. [6] state that one of the main problems to this 
application is the removal of noise. The authors propose a method using first derivative, 
amplitude threshold and area under the curve to differentiate between the eight types 
of movement. The method is applied on three persons and it reached a success percent-
age of almost 100% [5]. Rajesh et al. [7] propose a system based on EOG signals to drive 
motors to be used by amputee. A new method is proposed to detect blinking so that they 
can be used to drive motors. Initially the method faces a problem that involuntary blink-
ing is not differentiated from voluntarily blinking so both are used to drive the motors 
[7]. An average technique is used to remove this drawback which succeeds in raising 
the accuracy of the whole system to be 90.91% [7]. But in reference [8] and [9], a new 
method is proposed which depends on using images to detect whether an eye is closed 
or not. The success rate has reached an accuracy of 99.94% when using this method [8]. 
Although the success rate is very high, no state of the eye is detected other than being 
closed or open. In reference [10], detection of eye blinking (making a blink with the two 
eyes at the same time), left eye wink and right eye wink is discussed. The authors used 
the ZJU dataset and the accuracy of detection is 91.2% [10]. The authors examine the 
effect of the distance from the camera on the success rate of detection. The optimal dis-
tance is found to be 0.5 m at which the highest accuracy is achieved [10].

In the next paper, the detection of the human activity during the day is discussed. Ishi-
maru et al. [11] discuss the use of a new type of commercially available glasses to detect 
EOG signals. The proposed method is used to detect four types of human activities from 
the EOG signals namely reading, writing, eating and talking. In one experiment a time 



Page 3 of 19Hassanein et al. Journal of Electrical Systems and Inf Technol           (2023) 10:44 	

frame of 6 s and in another experiment a time frame of one minute is used to collect data 
for eye activity [11]. The success rate for identification of the activity is 70% for the first 
time frame and 100% for the later time frame [11].

In the following lines, the efforts done to solve a classification problem dealing with 
the EOG signals as the ones mentioned above are illustrated. The removal of the noise 
is discussed as it is the major drawback that can hinder the use of EOG signal. Lin et al. 
[12] discuss a new classification technique for eye movement detection. The slope of the 
EOG signal is passed through a limiter that limits values below a certain one. The system 
works successively in eye movement detection. However, when using the magnitude of 
the signals the detection of blinking become difficult that is why the author introduces 
a correction method to avoid this problem [12]. Abdel-Samei et al. [13] discuss the use 
of EOG signals as a way to facilitate human computer interaction. A dataset is collected 
from twenty-seven persons, fourteen of them are males and thirteen are females [13]. 
EOG sensors are used to detect horizontal and vertical eye movements. Signal process-
ing is used to detect EOG signals and remove noise using band pass filter. The Bo-Hjorth 
parameter is used to extract features from the collected dataset [13]. For the classifi-
cation problem, five algorithms are compared among which are K- Nearest Neighbor 
(KNN) and Support Vector Machine (SVM). The SVM and Cosine KNN are found to 
be the best classifiers to detect the horizontal and vertical classes of signals [13]. Bod-
rina et al. [14] discuss the removal of the abnormalities in a detected signal when the 
EEG and EOG signals are collected. The signals caused by eye movement and blinking 
introduce noise to EEG and EOG signals that should be removed. The authors use mean 
standard deviations of the signals read per each electrode to define the places of noise 
[14]. A signal with noise removal is reconstructed from the original signal. A dataset of 
readings from 600 persons is collected and the applied method achieves high level of 
success [14].

Finally, some of the applications in which EOG signal can be used are illustrated. The 
concept of using EEG and EOG signals to enable users to perform some functions is 
discussed in many papers such as [6, 15] and [16]. Graphical computer software is devel-
oped which presents to the user a number of functions to choose from using eye move-
ments [6, 17]. Sensors with one electrode are used to collect measurements for different 
type of signals and showed a promising success. Applied methods are used on several 
users and the results are generally positive which promote further investigation in this 
field. Barbara et  al. [18] discuss the detection of ocular angles. A new method is pro-
posed that takes the distance between the electrodes used for detection and the centers 
of the left and right retinas into consideration. The method succeeds in detecting the 
ocular centers with an almost 20% relative error [18]. The same proposed method is used 
to detect gaze angles. The system succeeds in detecting gaze angles with almost the same 
relative errors [18].

Electric signals recorded from the brain (EEG) are used to monitor the sleeping modes 
of humans. In one scenario, the EEG signals can be used alone, while in another the EEG 
signals can be complemented with the EOG signals to monitor the sleep of some volun-
teers. Complementing EEG with EOG can enhance the accuracy of any system that aims 
to interface humans with computers [19]. The EEG–EOG signals are the main focus of 
some literature review to find out the methods applied on them to control computers 
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[20]. The pre-processing techniques, feature extraction techniques and success evalua-
tion methods have been compiled to represent them to those interested in the topic. In 
this research work, we are only interested in the EOG signals but further investigation 
into complementing our work with the benefits of the EEG signals is possible.

In this research work, the previous work of others who investigate how to detect blink-
ing and winking is continued. An EOG sensor is used to record measurements of eye 
signals. A method is proposed that depends on statistical analysis of the measured sig-
nals when a blink or wink is produced to detect the type of eye signal. Finally, proposed 
features for an LSTM algorithm are illustrated to detect the type of eye movement that 
are robust and dynamic.

The rest of this paper is divided into five sections. The methodology obeyed in this 
research and the methods used to apply it are illustrated in section two. The dataset that 
we use in our calculations is described, and the way used to obtain it is laid out in section 
three. In section four, the LSTM algorithm is explained. The statistical analysis that is on 
our dataset is illustrated in section five and the different steps of processing it. In section 
six, the application of the LSTM algorithm is shown. Finally, the conclusion is drawn and 
results are compared with the accuracies of others researchers in section seven.

Methods and methodology
In this work, our first aim is to understand the behavior of the blinks and winks of the 
eye using statistical analysis. When examining the EOG signals, we find that blinks and 
winks are described into peaks and troughs. The slops of the peaks and troughs are used 
to define five types of signals. Double winks, single winks, intentional blinks, intentional 
long blinks and non-intentional blinks are all different types of signals which can be pro-
duced by the eye. When the first derivative is calculated, the slopes of peaks and troughs 
can be defined which can be used to define each type of signal. The maximum value of 
a positive slope or the absolute of the minimum value of a negative slope are seen to be 
always greater than 0.025 V/s. So, this value is put as a threshold to digitize the curve of 
the first derivative. The digitized curve is fed to a computer program to classify the type 
of the signal.

Statistical methods are used to detect the type of EOG signal generated by the user. A 
mathematical method is used which depends on the calculation of the first derivative of 
the EOG signal. The first derivative with respect to time is equal to the slope of the EOG 
signal [5]. Matlab2010a™ is used to do these calculations. Each type of EOG signal has a 
specific number of positive slopes and negative slopes to define its shape as is explained 
later. In addition, the duration of the signal is used to define the type of the signal. Then, 
the digitization process takes place for the first derivative. For any EOG signal, the values 
above 0.025 V/s are put equal to positive one. The values below negative 0.025 V/s are 
put equal to negative one. The values between positive 0.025 V/s and negative 0.025 V/s 
are put equal to zero. According to the counted number of positive ones and negative 
ones and the duration of the signal, the type of the signal is defined.

Our second aim is to apply the LSTM algorithm on the EOG signals to classify 
their type. Each EOG signal is fed to the LSTM algorithm accompanied by a group of 
features. Two types of groups of features are examined. The first group is composed 
of augmented signals of the original EOG signal. The second group is composed of 
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augmented signals of the first derivative of the original EOG signal. Results are com-
pared using the accuracy and the loss parameters.

Three male participants are invited for the measurement of the EOG signals. They 
are each informed about the purpose of the study and the procedures. They pro-
vided a verbal consent before the measurements because they are the same authors 
of the manuscript but a written consent can be submitted whenever required. All 
procedures conform to the Declaration of Helsinki and are approved by the projects 
committee.

Collection of dataset and tools
In this section, we illustrate the hardware and software which are used to obtain the 
measurements discussed in this paper. The dataset, which is collected using the hard-
ware, is discussed as well.

Tools

Hardware and software tools are used to obtain our results. In reference [21], a new 
sensor is proposed to detect the EOG signals to help people to communicate with the 
world. The new sensor is composed of four electrodes which are placed around the 
eye to measure the electric signals generated by the eye [21]. The success rate of cor-
rect detection reaches 91.25% in some cases [21]. Laport et al. [17] propose a sensor 
that is composed of one electrode. The accuracy of the proposed sensor is relatively 
low [17] and is not compared to other sensors which suggests that having one elec-
trode compromise the detection accuracy. In reference [22, 23], the paper proposes 
using Graphene Electronic Tattoos as electrodes to read eye signals. The electrodes 
are very accurate and proved their success in collecting signals coming out of the eye 
[22, 24]. Previous papers propose sensors which in some cases consist of large num-
ber of electrodes. In other cases, the accuracy of detection is not up to the required 
level or is very sophisticated as the one suggested in reference [22, 25].

In this research work, the PSL-iEOG2™ sensor is used to collect our readings. It 
consists of three electrodes only which make it easy to use by our volunteers. It has 
a high rate of accuracy in measuring the electric signals generated by the eye. This 
makes our selected sensor suitable for the aim which we need to study in this paper.

Three volunteers are asked to perform several single winks (SW), double winks 
(DW), intentional blinks (IB), non-intentional blinks (NB) and intentional long blinks 
(IBL). The volunteers are trained so that they can generate blinks and winks that can 
be detected by our computer program with high accuracy. Each volunteer attached 
three electrodes around his/her eye as shown in Fig. 1. The results are collected using 
the sensor and a computer (Intel Pentium CPU 3.4 GHz).

The readings are processed using Matlab2010a™. Once, the processing process 
includes obtaining the first derivative and the digitization process. In another, the 
processing process includes obtaining the first derivative and applying the LSTM 
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algorithm on the EOG signals and its features. Microsoft Excel sheet™ is used to plot 
the graphs shown in this paper.

Collection of dataset

An EOG sensor is used to collect measurements of blinking and winking eye movements 
for three persons. The EOG sensor produces measurements in volts versus time. The Volt 
axis is in milli-volts (mV), and the time axis is in seconds (s). For each person, measure-
ments for several DW, SW, ILB, IB and NB are taken. As shown in Fig. 1, one of our vol-
unteers is shown performing one of the types of eye movements. Each volunteer is given 
four seconds to generate the type of signals he/she prefers with his/her eyes. For each per-
son five files are collected where each file contains several measurements of a single type of 
blink or wink. For the LSTM algorithm, the dataset is created using original samples and 
augmented samples as explained later.

Theory of LSTM algorithm
We have four layers in the LSTM network as shown in Fig. 2. The layers are one tanh 
layer and three sigmoid layers. The output of the tanh layer has a range of values between 
negative one and positive one, but the output of the sigmoid layer has a range of values 
between zero and positive one.

The network starts with introducing the state of previous cell Ct−1 to the LSTM net-
work to decide what to keep and what to forget. This is done by the forget gate layer as 
shown in Fig. 2. The following equation represents the forget gate layer function [27]:

Fig. 1  One volunteer is using the EOG sensor to make a DW, SW, ILB, IB or NB. Electrodes are placed around 
the eye to take the measurement

Fig. 2  An LSTM network with four layers [26]
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where Wf  and bf  are the weight and constant value, respectively, to improve the perfor-
mance of the gate. Also, the [ht−1,Xt ] is a concatenation operation between ht−1 and Xt . 
The layer looks at the values of the ht−1 and Xt to generate a number between zero and 
positive one using the sigmoid function as seen in Eq. (1). According to the values of ft 
some values of Ct−1 are forgotten and others are remembered.

Next, the LSTM network decides the updated information to store in the new cell state 
Ct through the input gate. This is done by two layers which are the sigmoid layer and the 
tanh layer. The sigmoid layer decides what to be replaced and the tanh layer generates 
the new information through the following equation [27]:

where Wi and bi are the weight and constant value, respectively, to improve the perfor-
mance of the gate. The following equation is also used [27]:

where Wc and bc are the weight and constant value, respectively, to improve the perfor-
mance of the gate. To update the old state Ct−1 , the following operation is done to gener-
ate the new cell state Ct through the following equation [27]:

Finally, the fourth layer decides the output of the LSTM network ht through the fol-
lowing equation [27]:

where Wo and bo are the weight and constant value, respectively, to improve the perfor-
mance of the gate. The following equation is also used [27]:

The output presented in Eq. 6 is a filtered version of the new cell state Ct . Next, the 
processing methods for the taken measurements are discussed.

Signal processing using statistical analysis
In this section, we scrutinize the properties of the signals for each type of EOG. The 
properties of each type are used to the best to detect the type of eye movement. All sig-
nals are processed using Matlab2010a™ in three steps as follows. First the measurements 
are plotted to find out the peaks, troughs and duration of each kind of wink or blink. 
Second the first derivative is taken for all measurements to allocate slops of signals for 
each blink or wink. Third a digitization process is done for the first derivative to produce 
a signal which has only three values negative one, zero and positive one. The five types 
of signals are to be addressed consequently. We start by the SW type. Next, a plot of the 
raw measurement of a SW is shown in Fig. 3a.

(1)ft = σ
(

Wf .[ht−1,Xt ]+ bf
)

(2)it = σ(Wi.[ht−1,Xt ]+ bi)

(3)C̃t = tanh (Wc.[ht−1,Xt ]+ bc)

(4)Ct = ft × Ct−1 + it × C̃t

(5)Ot = σ(Wo.[ht−1,Xt ]+ bo)

(6)ht = Ot ∗ tanh (Ct)
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Single wink signal processing

In Fig. 3a, three points are specified as shown. Points 1 and 3 define positive slops while 
point 2 defines a negative slope. One peak is seen with maxima at t = 0.45s . The peak 
is located between points 1 and 2. One trough is seen with minima at t = 0.59s . The 
trough is located between points 2 and 3. We can see the Full Width at Maximum abso-
lute of the Slope ( FWMS ) for the whole SW in Fig. 3a, but its value can only be defined 
when the slope or derivative of the signal is calculated. Next we calculate the derivative 
of the signal which is shown in Fig. 3a. The derivative is plotted in Fig. 3b.

The y-axis in Fig. 3b is named as real dV
/

dt which means that it represents the first 
derivative of the raw values shown in Fig.  3a without any intermediate processing. 
From Fig.  3b, three maxima and minima can be seen and are defined by three points 
as shown. Each maximum defines a positive slope while one minimum defines a nega-
tive slope. Two maxima are defined by points 1 and 3. They are located at t = 0.44s and 
t = 0.62s . One minimum is defined by point 2. It is located at t = 0.52s . We can calcu-
late the FWMS for the whole SW by measuring the time difference between points 1 
and 3. FWMS is equal to 0.18s for the SW. Next, we digitize the first derivative plotted in 
Fig. 3b. The result is shown in Fig. 3c.

From Fig. 3c, three maxima and minima are seen which are defined by three points as 
shown. They are the same points defined in Fig. 3b. The difference is that all values are 
now having one of three possibilities negative one, zero and positive one. This kind of 
representation helps in defining the points of maximum positive slope and minimum 
negative slope by the computer. Points of maximum positive slope have a positive one 
value; points of minimum negative slope have a negative one value and all points in 
between have a zero value. This means that the computer can detect a SW when it reads 
two positive ones and one negative one interchanging with each other in a duration of 
FWMS = 0.18s . Next, the raw measurement of a NB is shown in Fig. 4a.

Fig. 3  a EOG measurement of a single wink (SW) showing one peak and one trough. b First derivative (FD) of 
a single wink (SW) showing three tips of one minimum and two maxima. c Digitized first derivative (FD) of a 
single wink (SW) showing three clearly separated values + 1, −1 and zero

Fig. 4  a EOG measurement of a non-intentional blink (NB) showing one peak. b First derivative (FD) of a 
non-intentional blink (NB) showing two tips of one minimum and one maximum. c Digitized first derivative 
(FD) of a non-intentional blink (NB) showing three clearly separated values + 1, −1 and zero
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Non‑intentional blink signal processing

In Fig. 4a, two points are specified as shown. Point 1 defines positive slop, while point 2 
defines negative slope. One peak is seen with maxima at t = 0.53s . The peak is located 
between points 1 and 2. We can see the FWMS for the whole NB in Fig. 4a, but its value 
can only be defined when the slope or derivative of the signal is calculated. Next we cal-
culate the derivative of the signal which is shown in Fig. 4a. The derivative is plotted in 
Fig. 4b.

From Fig. 4b, two maximum and minimum are seen which are defined by two points 
as shown. One maximum defines a positive slope while one minimum defines a negative 
slope. One maximum is defined by point 1. It is located at t = 0.5s . One minimum is 
defined by point 2. It is located at t = 0.57s . We can calculate the FWMS for the whole 
NB by measuring the time difference between points 1 and 2. FWMS is equal to 0.07s 
for the NB. Next, the first derivative plotted in Fig. 4b is digitized. The result is shown in 
Fig. 4c.

From Fig. 4c, two maximum and minimum are seen which are defined by two points 
as shown. They are the same points defined in Fig. 4b. The difference is that all values 
are now having one of three possibilities negative one, zero and positive one. This means 
that the computer can detect a NB when it reads one positive one and one negative one 
in a duration of FWMS = 0.07s . Next, the raw measurement of an IB is shown in Fig. 5a.

Intentional blink signal processing

In Fig. 5a, two points are specified as shown. Point 1 defines positive slop while point 2 
defines negative slope. One peak is seen with maxima at t = 0.78s . The peak is located 
between points 1 and 2. We can see the FWMS for the whole IB in Fig. 5a, but its value 
can only be defined when the slope or derivative of the signal is calculated. Next we cal-
culate the derivative of the signal which is shown in Fig. 5a. The derivative is plotted in 
Fig. 5b.

From Fig. 5b, two maximum and minimum are seen which are defined by two points 
as shown. One maximum is defined by point 1. It is located at t = 0.66s . One minimum 
is defined by point 2. It is located at t = 0.93s . We can calculate the FWMS for the whole 
IB by measuring the time difference between points 1 and 2. FWMS is equal to 0.27s 
for the IB. Next, the first derivative plotted in Fig. 5b is digitized. The result is shown in 
Fig. 5c.

From Fig. 5c, two maximum and minimum are seen which are defined by two points 
as shown. They are the same points defined in Fig. 5b. The difference is that all values 

Fig. 5  a EOG measurement of an intentional blink (IB) showing one peak. b First derivative (FD) of an 
intentional blink (IB) showing two tips of one minimum and one maximum. c Digitized first derivative (FD) of 
an intentional blink (IB) showing three clearly separated values + 1, −1 and zero
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are now having one of three possibilities negative one, zero and positive one. This means 
that the computer can detect a IB when it reads one positive one and one negative one 
in a duration of FWMS = 0.27s . Next, the raw measurement of a ILB is shown in Fig. 6a.

Intentional long blink signal processing

In Fig. 6a, two points are specified as shown. Point 1 defines positive slop, while point 2 
defines negative slope. One peak is seen with maxima at t = 0.54s . The peak is located 
between points 1 and 2. We can see the FWMS for the whole ILB in Fig. 11, but its value 
can only be defined when the slope or derivative of the signal is calculated. Next we cal-
culate the derivative of the signal which is shown in Fig. 6a. The derivative is plotted in 
Fig. 6b.

From Fig. 6b, two maximum and minimum are seen which are defined by two points 
as shown. One maximum is defined by point 1. It is located at t = 0.32s . One minimum 
is defined by point 2. It is located at t = 0.76s . We can calculate the FWMS for the whole 
ILB by measuring the time difference between points 1 and 2. FWMS is equal to 0.44s 
for the ILB. Next, the first derivative plotted in Fig. 6b is digitized. The result is shown in 
Fig. 6c.

From Fig. 6c, two maximum and minimum are seen which are defined by two points 
as shown. They are the same points defined in Fig. 6b. The difference is that all values 
are now having one of three possibilities negative one, zero and positive one. This means 
that the computer can detect a ILB when it reads one positive one and one negative one 
interchanging in a duration of FWMS = 0.44s . Next, the raw measurement of a DW is 
shown in Fig. 7a.

Fig. 6  a EOG measurement of an intentional long blink (ILB) showing one peak. b First derivative (FD) of an 
intentional long blink (ILB) showing two tips of one minimum and one maximum. c Digitized first derivative 
(FD) of an intentional long blink (ILB) showing three clearly separated values + 1, −1 and zero

Fig. 7  a EOG measurement of a double wink (DW) showing two peaks and two troughs. b First derivative 
(FD) of a double wink (DW) showing five tips of two minima and three maxima. c Digitized first derivative 
(FD) of a double wink (DW) showing three clearly separated values + 1, −1 and zero
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Double wink signal processing

In Fig. 7a, five points are specified as shown. Points 1, 3 and 5 define positive slops, while 
points 2 and 4 define negative slopes. Two peaks are seen with maxima at t = 0.31s and 
t = 0.48s . The first peak is located between points 1 and 2. The second peak is located 
between points 3 and 4. Two troughs are seen with minima at t = 0.39s and t = 0.62s . 
The first trough is located between points 2 and 3. The second trough is located between 
points 4 and 5. We can see the FWMS for the whole DW in Fig. 7a, but its value can only 
be defined when the slope or derivative of the signal is calculated. Next, the derivative of 
the signal is calculated and shown in Fig. 7a. The derivative is plotted in Fig. 7b.

From Fig. 7b, five maxima and minima are seen which are defined by five points as 
shown. Each maximum defines a positive slope while each minimum defines a nega-
tive slope. Three maxima are defined by points 1, 3 and 5. They are located at t = 0.3s , 
t = 0.47s and t = 0.68s . Two minima are defined by points 2 and 4. They are located at 
t = 0.34s and t = 0.52s . We can calculate the FWMS for the whole DW by measuring 
the time difference between points 1 and 5. FWMS is equal to 0.38s for the DW. Next, 
the first derivative plotted in Fig. 7b is digitized. The result is shown in Fig. 7c.

From Fig.  7c, five maxima and minima are seen which are defined by five points as 
shown. They are the same points defined in Fig. 7b. The difference is that all values are 
now having one of three possibilities negative one, zero and positive one. This means 
that the computer can detect a DW when it reads three positive ones and two negative 
ones interchanging with each other in a duration of FWMS = 0.38s.

Detection accuracy

The statistical features of each type of wink or blink are examined in previous subsec-
tion. In this subsection, we illustrate the differences and show how the performance of 
using these features in eye movement detection behaves. We start by comparing the fea-
tures of each type of eye signal as shown in Table 1.

As seen in Table  1, the digitized first derivative of the three types of EOG signals, 
namely NB, IB and ILB, contains one peak of positive one followed by one trough of a 
negative one. Then, the only way to differentiate between these three types is the time 
duration ( FWMS ) between the peak and the trough. The average durations ( FWMS ) of 
all 40 original samples or measurements are listed in Table 1. Each signal type or class is 
represented by 8 original samples. A clear difference in their values can be seen as the 
NB, IB and ILB. But, the SW and DW can be clearly differentiated from each other and 
from the other three types by the number of peaks and troughs. The SW should contain 

Table 1  The features of each type of EOG signal are tabulated

Signal Type Number of + ve ones Number of − ve one Duration 
(FWMS)
(s)

NB 1 1 0.07

IB 1 1 0.27

ILB 1 1 0.44

SW 2 1 0.18

DW 3 2 0.38
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two peaks and one trough. The DW should contain three peaks and two troughs. The 
duration ( FWMS ) of the DW and SW can be considered an extra confirmation on the 
type of signal.

The three volunteers mentioned in section III are asked to use the PSL-iEOG2™ 
sensor and record several reading for their eye blinks and winks. Each of the volun-
teers submits five files containing different type of eye blinks or winks. The statis-
tical analysis is performed on each of the five files. A computer program is run to 
count the number of positive ones, number of negative ones and the duration of the 
signal. Then, it defines the type of the signal and accordingly generates a message 
corresponding to the detected type of signal. The different types of signals and their 
corresponding messages are defined randomly and stored in a table inside the com-
puter program. The percentage of correct detection of DW, SW and ILB is excellent. 
The duration of the blink or wink in addition to the number of positive ones and neg-
ative ones defined for each type of signal are enough to detect any of them. All three 
are detected with 100% accuracy as shown in Table 2.

However for the IB and NB, the percentages of correct detection for them are rela-
tively low. For the IB, the accuracy of correct detection is 60% as shown in Table 2. 
The reason is that the FWMS of the IB is smaller than that of the ILB and greater than 
that of the NB. Also, the signal of any of the three types (IB, NB and ILB) contains one 
positive one followed by one negative one in the digitized curve. So it is very possible 
that with different people the IB signal can be detected as either a ILB or a NB. As for 
the NB, the accuracy of correct detection is 50% as shown in Table 2. The main reason 
is that the value of the slope of the EOG signal for some people is smaller than the 
threshold used specifically 0.025 V/s. In some cases, the NB signal is not detected at 
all for some people. The NB is removed from being used because of its very low per-
centage of detection.

Three volunteers are asked to use our system to examine its accuracy in case of 
being trained and not being trained.

Table 2  Each type of EOG signal is tabulated against the accuracy in its detection

Signal Type Accuracy (%)

DW 100

SW 100

ILB 100

IB 60

NB 50

Table 3  The accuracy in detecting random types of EOG signals in case of training our volunteers or 
not is shown

Training Accuracy (%)

Without 86.6

With 93.3
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For the three volunteers, the system is explained to them and the way it works but 
they are not trained on how to perform the different types of blinks and winks. The 
three are left to record their measurements and return four files per each containing 
their selected type of blink or wink. The statistical analysis described above is run on 
these files. The accuracy of correct detection for the selected type of blink or wink 
is 86.6% as shown in Table 3. In another trial, the same three volunteers are trained 
to perform the different types of blinks and winks. The three are left to record their 
measurements and return to us four files per each containing their selected type of 
blink or wink. The accuracy of correct detection for the selected type of blink or wink 
is 93.3% as shown in Table 3.

We conclude that to detect eye movement temporal properties of eye motion (time 
domain or x-axis) should be taken in to consideration. Also, spatial properties of eye 
movement (strength of signal or y-axis) should be taken into consideration. The first 
derivative of signals coming out of the eye movement is a good representation of 
changes in eye movement in the time domain. Statistical analysis is excellent in detec-
tion of some types of eye movement but not all types. Next, we use the LSTM algorithm 
to detect types of EOG taking into consideration the importance of the first derivative 
of the signals of the eye motion. In the next section, the aim is to find out if the training 
of the LSTM network can enable it to detect the five classes with an acceptable accuracy 
even for the NB class.

Signal processing using LSTM algorithm
In this section, the LSTM network is used to train a deep neural network to classify time 
series data. An LSTM network uses the progress of events along the time steps to make 
predictions about similar progress of events. Kudo et al. [28, 29] uses the Japanese Vow-
els data set as described to predict the identity of the speaker entered uttering of two 
Japanese vowels pronounced consecutively. Here, the time series of the eye movement in 
addition to some features to identify it are used to predict the type of the movement as 
explained.

Data processing

The LSTM network architecture is defined as follows. A bidirectional LSTM layer with 
100 hidden units is specified and output the last element of the sequence. Five classes are 
defined by including a fully connected layer of size five, followed by a softmax layer and 
a classification layer. A bidirectional LSTM layer is used since full sequences are avail-
able at prediction time [30, 31]. This enables the bidirectional LSTM layer to learn from 
the full sequences at each time step [32, 33]. A learning rate of 0.001 is used. The values 
of the parameters used are decided based on trial and error until best accuracies are 
achieved.

The data are processed to examine the performance when using the LSTM algorithm. 
For each type of eye movement, we applied data augmentation techniques to obtain few 
features for each signal. In Fig. 8, each blinking action is processed to obtain a discrete-
time series and five other features as shown. One feature is the blinking time series that 
is normalized to have a maximum value of one. Another feature is the blinking time 
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series referenced to zero so that it has a minimum value of zero. This is obtained by sub-
tracting the minimum value from the series. The other three features are the reversed 
order of the original signal, normalized and zero referenced ones.

Other data augmentation techniques are used to obtain extra features for each signal. 
Each blinking action is processed to obtain a discrete-time series and two other features 
as shown in Fig. 9. One feature is the first derivative of the blinking time series. Another 
feature is the reversed order of the first derivative of the blinking time series. The dis-
tribution of the original samples and the augmented data (features) are described in the 
following lines.

Fig. 8  Original SW Blinking action, the normalized version of it and the zero-referenced version of it are 
shown in solid line. For each type, a reversed version of the signal is shown in dashed line

Fig. 9  The first derivative of the original SW Blinking action is shown in solid line. A reversed version of the 
signal is shown in dashed line

Table 4  The distribution of the original samples and augmented data is shown

Numbers Type

40 Original samples

40 Right Shifted (augmented)

40 Left Shifted (augmented)

120 Zero Referenced (augmented)

120 Normalized (augmented)

360 Reverse (augmented)

480 First Derivative (augmented)
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Although three volunteers have participated in this study but using data augmentation 
techniques a reasonable dataset is obtained. Balestriero et al. [34] suggest that augment-
ing the data has proven to improve the performance of the proposed datasets. As shown 
in Table 4, the volunteers submit 40 original samples as that shown in Figs. 3a, 4a, 5a, 
6a and 7a. The original samples are distributed on the five classes. Using these original 
samples, 40 right shifted samples are generated which are shifted forward in the time 
domain. 40 left shifted samples are generated which are shifted backward in the time 
domain. 120 zero referenced samples are generated as that shown in Fig. 8. 120 normal-
ized samples are generated as that shown in Fig. 8. 360 reversed samples are generated 
as that shown in Fig. 8 and 480 first derivative samples are generated as that shown in 
Fig. 9. The dataset is divided into 80% training samples and 20% testing samples.

Detection accuracy

In this subsection, the accuracy of the classification and the losses done by the LSTM 
network are discussed. The original blinking action with three other features that are 
augmented from the original one are used as an input for an LSTM network on first trial. 
The three features are the normalized, reversed version of the original sample and the 
reversed version of the normalized sample. On second trial, the original blinking action 
with two other features that are augmented from the first derivative are used as an input 
for an LSTM network. The two features are the first derivative sample and the reverse 
version of the first derivative sample. Both are compared to find out the effect of the first 
derivative in improving the results of the LSTM network.

As shown in Fig. 10a, the accuracy achieved for the LSTM network through hundred 
epochs is plotted for the first trial. A best fit shows that accuracy is increasing as the 
number of iterations increase. The accuracy curve is unstable and keeps fluctuating even 
as the best fit increases. Training data are not enough to train the network to predict 
most cases accurately. Learning curve is not stable even as the accuracy increases.

In Fig. 10b, the losses for the LSTM network through hundred epochs are plotted. A 
best fit shows that loss is decreasing as the number of epochs increase. The loss curve is 
unstable and keeps fluctuating even as the best fit decreases. Training data is not enough 
to train the network to predict most cases accurately. Learning curve is not stable even 

Fig. 10  The original blinking action, normalized version, zero-referenced version along with their reversed 
order versions are used. a Progress of the accuracy curve as the number of epochs increases for the training 
dataset is shown. b Progress of the loss curve as the number of epochs increases for the training dataset is 
shown
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as the losses decrease. It takes 192 s to complete the run. Accuracy of classification for 
the testing data is 83.33%.

As shown in Fig. 11a, the accuracy achieved for the LSTM network through hundred 
epochs is plotted for the second trial. A best fit shows that accuracy is increasing as the 
number of iterations increase. The accuracy curve is stable and doesn’t fluctuate much 
after reaching 40 epochs. Training data are enough to train the network to predict most 
cases accurately. Learning curve is stable as the accuracy increases.

In Fig. 11b, the losses for the LSTM network through hundred epochs are plotted. A 
best fit shows that loss is decreasing as the number of epochs increase. The loss curve 
is more stable and doesn’t fluctuate much after reaching 40 epochs. Training data is 
enough to train the network to predict most cases accurately. Learning curve is stable 
even as the losses decrease. It takes 160 s to complete the runs. Accuracy of classification 
for the testing data is 91.67%.

Conclusion
Two methods to detect the type of wink or blink produced by the eye are discussed and 
proposed as a way for human computer interface. We start by using an ESP-iEOG2 sen-
sor to detect eye blinks and winks. The measured signals are processed using statistical 
analysis. The analysis is composed of two main steps. First, we take the first derivative 
of the EOG signal with respect to time. A curve is produced that is composed of peaks 
and troughs. The peaks represent positive slopes in the raw EOG signal. The troughs 
represent negative slopes in the raw EOG signal. Then, a digitization process takes place 
on the curve of the first derivative. Each value above 0.025 V/s is given a value of positive 
one. Each value below 0.025 V/s is given a value of negative one. Any value in between 
positive 0.025 V/s and negative 0.025 V/s is given a value of zero. According to the num-
bers of the positive ones and negative ones in any recorded signal and their duration the 
type of the signal is detected. Accordingly, the type of the signal is decoded into a mes-
sage to be generated by the computer program. The NB type of eye signal has a very low 
percentage of detection and so we advise not to use it. This method is tested on three 
volunteers. We conclude that training is a very important factor in the success of our 
system to detect the eye blinks or winks. First derivative is crucial in classifying the type 
of EOG signal. Next, the LSTM algorithm is used to classify EOG signals. Two types 

Fig. 11  The original blinking action and the derivative are used. a Progress of the accuracy curve as the 
number of epochs increases for the training dataset. A best fit shows that accuracy is increasing as the 
number of epochs increases. b Progress of the loss curve as the number of epochs increases for the training 
dataset. A best fit shows that loss is decreasing as the number of epochs increases
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of features are used in the algorithm. One type is the original EOG signal, normalized 
version of it, zero references version and the reversed order of those versions. Another 
type is the original signal, first derivative of it and the reversed order of those versions. 
The formal achieved accuracy of classification for the testing data equal to 83.33% while 
the latter achieved accuracy of classification for the testing data equal to 91.67%. Test-
ing takes 192 s for the formal while it takes 160 s for the latter. When comparing those 
results to the recent published ones. Bennett et al. proposed a CNN-LSTM network to 
be used to detect type of eye movement using images and achieved an accuracy of 83.5% 
[35, 36]. Reyes et al. proposed a method based on brain wave signals to classify type of 
eye movement and achieved an accuracy of 92% [37, 38]. The proposed features have 
achieved accuracy better in the former case and almost equal in the later one. The for-
mer study has used images to detect eye movement and the later study has used brain 
waves to make the detection so more rigorous experimental work is required. The data-
set must be unified to make the comparison as accurate as possible which is one of the 
problems in the machine learning field.

The advantage in the use of the LSTM algorithm is accompanying the time series 
signal with extra features that can improve detection accuracy. The best feature is the 
inclusion of the first derivative of the original signal which has proven to be effective in 
improving detection process as shown here and in reference [5].
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