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Introduction

of the most popular control strategies for a class of deterministic strict-feedback non-
linear systems. The neutral type schemes [2-6, 13, 16, 19] are all significant examples.
Since stochastic neutral models are essential for many applications in engineering and
research, numerous control mechanisms have been developed to ensure probability sta-
bility. In this study, robust stochastic state stability was established, and a neutral-type
delay system was used in the design process together with Hy, control.

For stochastic neutral delays, there are two different stability analyses: one is delay-
dependent and contains information on delay sizes [3] through [9, 16, 17]; the other
is delay-independent and can be applied to delays of any size [13]. Both employ LMI
descriptions as part of their optimization techniques. In [10, 11], it is discussed how
mixed nonlinear odd-even effects and arbitrary switching effects can be used to pro-
duce stochastic stability of finite duration. Time delays and parameter uncertainty
are issues with the stochastic model’s Hy control; these issues were fixed when state
feedback controllers could be constructed with the assumption that all state varia-
bles were present. The results cannot be applied if portions of the real states are una-
vailable. In [18] Introduced decomposition matrix technique with Jensen’s integral
inequality, Peng-Park’s integral inequality, Leibniz-Newton formula and proved expo-
nential stability of Hy, performance level. In this paper, all the inequalities are exist
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in x(¢) = f (¢, x¢), do not given any importance for neutral delay. In [22] investigated
finite-time bounded (FTB) tracking control for a class of neutral systems. Firstly, the
dynamic equation of the tracking error signal is given based on the original neutral
system. Then, it combines with the equations of the state vector to construct an error
system, where the reference signal and the disturbance signal are fused in a new vec-
tor. The error system, input—output finite-time of the closed-loop system is proved
stability by utilizing the Lyapunov—Krasovskii functional. The finite-time stability
conditions are formulated in linear matrix inequalities (LMIs). It does not involved
any neutral delay system.

The conventional delay-independent condition, which calls for a controller design with
a uniformly sized time delay, is the only one that is used by the techniques. All physical
systems cannot be applied because uniform time delay is not always present. To achieve
less conservative delay-dependent conditions, many different approaches have been
tried. An efficient stochastic differential system is determining the size of the delay under
conservative assumptions of neutral type. The stability issue, however, clearly hinges on
time delay because it is well known that a certain delay-independent criterion fails. It is
required to show the time delay in the control design in order to produce delay-depend-
ent conditions, which is necessary to get over this block [5, 7, 8, 12, 14, 15, 17-19, 21].

However, Chen et al. [2], Niculescu [19] studied the delay-dependent exponential sta-
bility of stochastic systems can similarly to x(£), which is stochastically stable in a deter-
ministic manner. However, the presence of neutral stochastic case makes things more
complicated and prevents the direct application of the techniques [6, 9, 17] of all deter-
ministic state variables to a stochastic neutral system. Regardless of the parameter uncer-
tainties, which have not yet been fully investigated, the stability criteria are dependent
on dynamic output feedback controllers recommended by disturbance attenuation level;
however, it is still an open and difficult problem. In this study, we demonstrated that the
cap is stochastic by demonstrating that x.(¢) = x(¢) — Cx(t — 1), y(t) =f (¢, x¢).

The paper is organized as follows. In “Preliminary modeling” section contains prelim-
inary results. Some sufficient conditions are constructed for stochastic neutral system
which is given in “Main models” section. In “The robust Hy, control” section, the stabil-
ity of state delay with Hy control of stochastic neutral system is given. In “Numerical
examples” section presents two numerical examples to show the validity of the proposed
results and some conclusions are drawn in “Conclusions” section.

Notations In this paper, R” and R"*™ denote, the n dimensional Euclidean space,
respectively, and the set of all # x m real matrices; L2[0,00) is the space of square
integrable on the interval [0, 00). The Euclidean norm |- |is in R” and C([—/,0] : R")
which denote the family of continuous function ¢ form [—/,0] to R” with the norm
¢l = sup_;—y<o|¢(0)|, and I denote the compatible dimension identity matrix.
The notation X > Y (respectively, X > Y) where X and Y are symmetric matrices,
which is meant that X — Y is positive semi-definite (respectively, positive definite).
The matrix A denotes the transpose of Amax and Amin, it stands for eigenvalue of maxi-
mum and eigenvalue of minimum respectively and the operator norm is denoted by
Al = sup{|Ax]| : |x| = 1} = /Zmax(ATA). The notation (2, F, {Ft};>0, P) is complete
probability space with a filtration {F}; and satisfying the usual conditions (i.e., the fil-
tration contains all P-null set is right continuous). The space LI})-,([—I, 0] : R") denotes
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the family of all F,-measurable C([—/,0]: R")-valued random variables. The value
¢ ={p®) : =1 <0 < 0}isrelated tosup_;_y-o Elp(0)|P < oo.

Preliminary modeling

Let {r(¢),t > 0} be a right continuous Markov chain on the probability space taking
values in a finite state space S = {1,2,...,N}, then following transition probabilities
are holds [20];

prcs i1

where A > 0and Aj; > 0 is the transition rate from i to j if i # j while A = — Z#i Ajj.

If A” = [a]1xn and AM = [a)l],xy, satisfying af <aj!,V1 <i,j <n, the inter-
val matrix [A”, AM] is defined by [A”,AM] = (A = [ay : @] <aj <a}',1<ij<n).
If A,A € R"",||AA| < A is a nonnegative matrix, then [A 4+ A] denotes the interval
matrix [A — A, A + A]. In fact, any interval matrix [A”, A™] has a unique representa-
tion of the form [A + A], where A = (%)(A”’ + AM), then 4 = (%)(Am — AM,

For each i € S and the interval matrices [A; £ A;], [B; + B;], [C; £ C;I, [D; & D;] are
exists in S, then consider n-dimensional stochastic neutral state delay system with
Markovian switching structure as

dlx() — (Ag(r(®) + AAg(r())(E — )]
— [AC©) + AAFO)X(E) + A )
+ AAL O — h) + By (1))
+ ABy(r(£)v ()
+ (Ba(r(6)) + ABa(r(0)w(t)ldt + [(E(r(t)
+ AEG(O))x(8) + (Ex(r(0) + AE,(r(2))) o
X 2t — h) + (Hi(r(8) + AH1 (r(£)w()}doo(0),
2(t) = (C(r(®) + ACTONx(E) + (Ch(r(®))
+ ACLr(ONx(t — h) + D1(r(1)
+ ADL(r(D)V(E) + (Da(r(2))
+ ADy (r (D)) w(D),
X = x(to +0) = ¢(0),0 € [-1,0],

where x(t) € R” is the state vector, v(£) € R"*" is the control input and w(¢) € R? is an
exogenous disturbance, z(f) € R” is an output controller, A, Ay, Ay, B1, B2, C, Cp, D1,D5
are known real constant matrices with appropriate dimensions, g > 0, # > 0 are con-
stant time delays and g may not be equal to /1, here [ = max{/, g} and ¢ (9) are continu-
ously differentiable on the interval [/, 0], dw(t) is a Brownian motion and E, Ej, H; are
stochastic constant matrices.

Main models
Consider state feedback controller is

v(t) = Kix(t), ¥ K; € R™™, i = r(2), 3)
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to prove stability of system (2), the following assumptions are need. In this case the nota-
tion, A(r(£)) will be denoted as A, and so on and time varying uncertainties are assumed
as

A; = A, + AA,, By = By, + ABy,,

Ei = E, + AE, Ey, = Ej, + AEy,,
Bi; = Bi, + ABiy, By = Byy + ABy,
Ci=Cr+ AC, Ay, = Agyr + Mgy,

Ehi = Cj, + ACy, Dy; = Dy, + ADy,,
Doi = Dy, + ADsy, Hi; = Hiy + AH,,
Hy; = Hy + AHy,,

where AA;, AAgr, AB1y, AByy, AEy,, ACy, AH1y, AHyy, AD1y, ADy, are time varying
uncertainty parameters. The resulting of the uncertain closed-loop system (2)-(3) can
be written as

dlx(t) — Ag,(t — q)]
= [Ax(t) + Apx(t — h) + Biv(t) + Byiw(t)]dt
+ [Ex(t) + Epx(t — h) + Hyw(®)]do(t), 4)
2(t) = Cix(t) + Cpx(t — h) 4+ Dyv(t) + Doyw(t),
X, = x(to +0) = ¢(6),0 € [—1,0].

In this case, the controller access are depending on state response x(£) and the jumping
process (). The solution of system (1)—(4) at time ¢ is x(¢, ¢, 7(¢), v, w) which is related to
the initial conditions ¢ and jumping process r(£), and the control input v(£), disturbance
w(t), respectively, and x(0, xg, 7(0), v, w) represents solution of system (4) at time ¢t = 0.

Definition 3.1 The state stochastic delay system (4) with g,/ € L2([—1,0] : R"™), and for
every ¢ € R" exists, then solution x(¢, ¢, r(¢), v, w) is said to be mean-square stochasti-
cally stabilizable if

t—00

T
im E{ [ 6.0,r0,9) = Agite = )"

X (@(t, ¢, 7 (8), V) = Aga(t — @)t} = x] P,
and is said to be robustically stochastic stable with disturbance attenuation y,

if it is mean-square stochastically stabilizable under zero initial conditions of
E|z|l;2 < yllw(®)|l 2, then for all nonzerow € L2[0, 00) such that

/oo Elzit)Tz()]dt < y? /OO w(t) Tw(t)dt.
0 0

Let
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wls = { /0 Wl (Ot}

and

lzll2 = { /0 Wz},

and let Gz, denote the system exogenous input w(t) and control output z(¢), then Hy
-norm of the closed-loop system (1)—(4) is equivalent to ||G,,, || < .

The following lemma provides some sufficient condition for stochastic stability of H
control system.

Lemma 3.1 [20] Let Q; be a nonnegative definite symmetric matrix, there exists an
interval matrix A,, AA, € [A + Al such that

(Ar + A4 Q1 (A, + AANT

T LT (5)
= A+ 04 QA + (1+ D AATQiA4,
and
(Ar + AA, + Er + AE)Q1(Ar + AA, + Er + AEV)T
< AT QA + AAT QIAA, + E,QIE]
1
+ AEQIAE] +3(A] QuA, + ZAATQIAA) ©

T 1 T T
+2eE QUE] + “E;QIE] +eAA[ QiAA,

2
+ EAE,T Q1AE,.

Proof 1t is well known that, if A, = 0 or AA, = 0, then [1]

Ar + AADQIA, + AA)T
< AT QA + AAT QIAA, + A, QuAAT + A4, QAT

If
AT QIAA, + A QIAAT <€Al QiA,

1 T
+ A4 QuAAT,

for any € > 0O, then
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Ar + AADQIAr + AADT < A+ AT QA,

1
+ 1+ E)AA,TQlAA,.

And similarly if either A,, E, = 0 or AA,, AE, = 0, then

(Ar + AA; + E, + AE) Qi (Ar

+ AA, + E, + AE)T

< ATQiA, + AATQIAA, + A,QAAT
+ A QAT + ETQiE, + AEf QI AE,
+ EQIAE" + AE,QiET + AATQ14,
+ AEF QAT + A,QiAAT + E,QiaAT
+ AE,Q1AAT + A, QiET + AA, QuET
+ AEQE! + A, QIAE! + AA,QIAET
+EQAE] + EQA]
< ATQiA, + AAT Qi AA, + E,QuET

1

+ AEFQIAE, +3(eA, QAT + gAA,T Q1AA))
T 1 T

+ ZEErQlE,« + EErQlEr

2
+eAATQ1AA, + gAJS,T Q1AE,.
O

Theorem 3.1 Consider the neutral uncertain state delay system (4), if Markovian
switching at v(t) = 0 and w(t) = 0 such that

dlx(t) — Ag(t — q)]
= [A(t) + A x(t — B)]dt + [Eix(t) + Epx(t — h)]do 7)
X1y = x(to + 0) = $(60),0 € [—1,0], r(0) = ro, r(t) = i.

There exist matrices P; > 0,Q > 0,R > 0, W > Oand
it T = =T 5T "t
AiPi +A; Pi+EP; +E; Pi+ A; (Q+ R)A;

S
+ > Ayl + Ay P+ ApPi+ EgPi+ E P,
j=1
+A4,(Q + R)Ag, — W + Pi(Ay, + Ep,)
— Pi(Ag, + Eg) <0,
Pi(Ay, + Ep,) > 0,Pi(Ag, + Eg)) > 0,
W =0Q —;\;;(Q +R)Zﬂﬁ >0,

such that system (4) is stochastically stable.

Page 6 of 24
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Proof The Lyapunov functional of the above system is (see [8])
V() £,r(8) = (x(2) — Agx(t — q) " Pix(2)

_ t
At -+ [ ST 00
t—q
t
—|—/ xT ()Rx(7)dx.
t—h

It can be derived by Ito’s formula;
EV(x(¢t),t,r(t)) = EV(x(0),0,7(0))

S
+ / LV (x(s),s,r(s))ds,
0
where LV (x(s), s, 7(s)) = V(x(s),s, r(s)), L is the infinitesimal generator. Then

d o1
aV(x(t), t,r(t) = ilglo X[V(x(t + A),t+ A,

and

LV (x(£),t,r(t)) = 2(x(¢) _Zqix(t — ) Pi((t)
— Agi(t — q) + 27 (©)Qx(t) — 2T (t — ) Qx(t — q)
+ &7 (ORx(£) — xT (t — W)Rx(t — h) = 2(x(t)
— Agx(t — ) Pi(A;i + Ei + Q+ R)
X (x(t) — Agax(t — @) +x7(£) > AyPyx(t)
j=1
+2(x(t) — Agx(t — q) T Pi(Ayx(t — h)
+ Epx(t — h)) — 2x(0)TPi(A; + Ei + Q + R)
X Zqix(t —q) — ZZqix(t — q)TPi(Zi +E
+Q+Ryx(t) —xT (t — q) Wa(t — q) — xT (¢t — h)
Rx(t — h) + 2(x(t) — Agx(t — q))Pi(Ay,
+ E)xT (¢t — h).

By Lemma 3.1 the above result can be rewritten as
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LV (x(t),t,r(t)) < 2T ()[CHAT P;A; + AAT PiAA;
T T T 1 T
+EiPiEi + AEi PL‘AEZ' + B(GAZ'P;’A;' + EAAL» PiAAL‘)
T 1 T T 2
+ 2€¢E;P,E; + —E/P,E; +€eAA; PiAA; + —
€ €
x AE]PAE} + C7'Pi+ Pi(Q+ R + Pi(Q+R)

S
+D AgPx(0) + x(t — )T [CHALPAG
j=1

+ AALPAAy + E4PiE]; + AEPIAE,

1
+3(eALPAL + EAAqTiPZ-AA;;) + 2€EyiPiE];

i
+ 1p pET +eAALPAA,; + EAErPiAE ;)
€ qi- 1=qi qit 'l qi € qi q
+C P+ P(Q+ R + Py(Q+R) — W]
x x(t — q) — 22" (O[CHALPA];

i

+ AALPAAL + EyPE], + AE[ P AE,

12
1
+3(eALPAL + EAAqTiP,'AA;-) + 2€EgiPE);
1 T T 2 T
+ gEquiEqi + 6AAqL»Pl'AAq,' + EAEq,'PiAEqi}
+C7'P + Pi(Q+ BT + Pi(Q+ R)x(t — )
+ 27 (t — ICHALPAL + AALPIAAT

i
+ E4PiEL + AELPAEy + 3(eALPAL
1 T T T 1 T

+ EAAqul'AAqi) + ZEEquiEqi + gEquiEqi

Tp. . 2 Tp. . -1p.
+ €AAGPiNAG + = AEGPiAEG) + CP;
+Pi(Q+ R +Pi(Q+R)x(t) +xT (I +€)

1
x Al Pidp, + (1 + =) AA] PiAA,Tx(t — h)
1 6 1
1
—x"(t = I+ AL PA, + 1+ g)AA;HAA,,,,]
1
x x(t—h) —xT(t— h)[i(Chi + CHIRx(t — h)
1

+x(O[A + AL PiAy, + (1+ E)AAZI,P,»AA;,L.]
xx(t — )" —xT(t — L1 + e)A] PiA,,

1
+ A+ D)AALPIAAL T (8 — h)

6 13

=n)TE8m@),
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where

Qn Qf, Qs
Ei=| Qu Qn QL |,
QL Q3 Q33

Qi1 = CHAT PA; + AA] PiAA; + E;PET
T T 1 T
+ AE; PiAE; + 3(eA;PiA; + —AA; PiAA))
€
p.ET l p.ET Tp A4,
+ 2eE,P,EF + ~E:PEF + e AATPAA;
€

g Tp. . —1p, , T
+ GAEL» PAE}}+C; Pi+Pi(Q+R)

N
+P(Q+R + D AyP
j=1

Qo = CH{ALPiAgi + AATPiIAA, + E4PiE);
1
+ AELPAEg + 3(eALPAT + gAA;.
1
x PiAAL) + 2€EiPiE; + gEquiE;
2

+eAALPINAG + EAE;PiAEqi} 4GP,

+P(Q+RT +P(Q+R —W
Qo1 = —2(CHALPAL + AALP,AAL

i

+ EgiPiE); + AELP AEg + 3(eALPAL
1
+ EAA;Pi AAL) + 2€E4PiE);
1 T T
+ gEqul'Eqi + GAAqL'P,'AAqL'
2 T —1
+ EAquPiAEqi} + Ci P;
+P;(Q+RT +P(Q+R),
1
Qo3 = —(1+ Ay Pidg = (1+ )AAG PN,
1
Q31 = (1+ €A} PiA, + (1 + E)AA,{ipiAAhi,

1 _
Q3 =~ (Cii + C,.HR

and n(t) = [x(¢),x(t — q),x(t — h)]. Based on the inequality (9), mean-square stability of
the system (3)—(4) can be proved if

LV (x@),t,r(t) n@®)" ()

V(x(),t,r@) A (10)

where A = (x(t) — Agx(t — @) T P(x(®) — Agx(t — @) + [/, T (O)Qx(1)dr + [ x" () Rx(v)dr.

Note that, if E; < 0, P; > 0 and x # 0, such that
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LV (x(),t,r(@))
Vix(@),t,r(t))

< min{ Amin(—Ei) }

ieS Amax(P;) + qimax(Q) + Mmax(R)
If
. /lmin(_ Ei)
p=rmin { Tmax(Po) + @max(Q) + Mimax (R) }

and g > 0, then
LV (x(2),t,r(@) < —BV(x(@),t,r(2)).
Therefore by Itos formula
k{V (x(@),t,r(£)) — V(x(0),0,r(0))}

t
:E/ LV (x(s),s,r(s))ds
0
¢
< —ﬂ/ EV(x(s),s,r(s))ds.
0

By Gronwell-Bellman lemma the above result can be rewritten as
E{Vx(@),t,r(t)) <exp(=pt)V (x(0),0,r(0))},

for allQ > 0, R > 0. As on Lemma 3.1, the following inequalities are holds
¢ t
E/ xT (1)Qx(z)dt > O,E/ xL(t)Rx(7)dt > 0,
t—q t—h

and

E{(x(t) — Agx(t — @) Pi(x(t) — Agx(t — @)}
t

— E(V(x(0), 6, r(8)} — E / +T (1) 0x(1)de

t—q
t
+E / xT (0)Rx(t)dt
t—h
< exp(—)V (x(0),0,7(0)),

Page 10 of 24
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for all ¥(0) € S. Let

T
E{/O @(2) — Agx(t — ) Pi((t) — Agx(t — ))dt}

T
< / exp(—BT)dtV (x(0), 0, r(0))
0

-1
= ?[exp(—ﬁT) — 1]V (x(0), 0,7(0)).
Taking the limit as T — oo, for all T € [0, o0),

;g;E{ATma>—A%Mt—q»Tﬂma>
— Agx(t — q))dt}
< %xgkimw<P»—rqimu<Q)
+ Hlmax(T))x0.
If P; > 0,i € S, then

T
dim E{ | @) — Agau(t — )" Pilx()
— 00 0

- Aq,‘x(t - Q))dt o, ro}
< x{ Pxo,
where
P = { Jmax (P) + qlmax(Q) + Himax(R) }
= max )
ieS B Zmin (P:)

this implies that closed-loop system (4) under the control law (3) is stochastically stable.

Form Schur complement, 8; < 0,i = 1,...,s,if and only if

Page 11 of 24
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CAAT PA; + AAT P, AA; + E;P,ET + AE] P, AE;
pAT + L AATp AL T
+ 3(eA;P;AT + = AATP;AA;) + 2¢E;PiE;
€
1 T T 2 T
+ —EP;iE; +€e€AA; PiAA; + —AE; P;AE;}
€ €
S
+C P+ PQ+RT +P(Q+R) + ) APy

j=1
+ QCHALP Ay + AALPAA + E4PiE);
1
+ AELP/AE; + 3(eAqTiPiA;; + EAAqTiPiAA;L-)
T 1 T T
+ ZGEquiEqi + gEquiEqi + EAAqu,‘AAqL‘
2
+ ZAEGPIAE) + TP+ PiQ+ R)T
+Pi(Q + R)T (CiAgPidg; + AAgPiAA,
T T T T
+ EuPiE] + AELPAEy + 3(€ALPAT
1 1
- EAAqTiPi AAL) + 2€E4PiE ) + gEquiE{;
2
T T —1
+ €AAGPiAA G + = AEGPIAEG) + CPy
+P(Q+ R +Pi(Q+R) — W) 1 2(CHAL
x PAL + AALPAAT, + EqiPiE;
1
+ AEPiAE, + 3(eALPAL + EAA;PL« AAL)
T 1 T T
+ 26EquiEqi + EEquiEqi + EAAquiAAqL‘
2 T -1 T
+ EAEqu,«AEqi} +C Pi+Pi(Q+R)
1
+PiQ+R) + (1 + )AgPidg, — 1+ 2)
T p. T Tp. 1
X AAgPiAAG)TI((1+ )Ag Py — (1+ )
1
X AATPAAL) + (1 + €)A] Piy, + (1 + g)
1 e
x AAZZ_PL»AAhl.)T(E(Chi +CHR!
1
X (1+ A Py, + (1+ E)AAZPiAAhi) <0.

IfX; =P ! then multiplying P by (12), we get
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CXi{AIPA; + AAT P;AA; + E;P,ET
Tp Ar. AT L YA AT AA.
+ AEFP,AE; + 3(eA;P, AT + = AAT P AA)
€
T 1 T T
+ 2¢E;P,E; + —E;P,E; +eAA; P;AA;
€
2 ETp.AEY o C-1p. 1 P, T
+ ZAEPAE) + C P+ Pi(Q+ R)
S
+Pi(Q+R) + Y AyP+ QCXAALPAL

j=1
+ AALPIAAL + EgPiE]; + AELPiAE,
T 1 T
+ 3(€Aq,‘PiAqi + EAAqui AAg)
1
+ 2¢EgiPE]; + ;Eqip,-E;; +eAALPINA;
2 T -1 T
+ AP AEg) + G XiPi+ XiPi(Q + R)
i

+ E4PiE]; + AELPAEy + 3(eALPAT

i

+ XiP(Q + RN (CHALPAL + AALPAAT,

1 1
+ EAA;piAA;,.) + 2€EuPiE]; + Equ-p,-E;; (13)
T 2 T —1
+ EAAquiAAql‘ + EAEquiAEq,'} + C; P
+P(Q+ R +Pi(Q+R) — W)
X (UCHALPAL + AALPAAT, + EyiPiE);
1
+ AELPAEg + 3(eALPAL + EAA;pi AAL)
T 1 T T
+ 26EquiEqi + Equ'PiEqi + EAAquL’AAqL'
2 T -1 T
+ EAEquiAEq,‘} +C Pi+P(Q+R)
1
+Pi(Q+R) + (1 + )AL PiA, — 1+ )
x AATPAAL) T Xi(1+ )AL PiA,
1
— 1+ g)AA;HAA%,) + (1 + ©A], PAy,
1 T T 1 -1 -1
+ A+ E)AAhiPiAAhi) (g(Cm +C, R X;
1
x (L4 €A} PiAy, + (1 + —)AALP;AAy,) < 0.
i i € i i

As on LMI, the above expression can be rewritten as

r, ©;, vy Wy
er —®»;, 0 0
w0 —p 0
v, 0 0 -I
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= Xi Xil -0
! Xi2 Xi3 ’
xi = CHAT XiA; + AAT X, AA; + EXGEF
1
+ AETX;AE; + 3(eAXGAT + = AAT X AA))
€
T 4 Y py T Ty g,
+ 2eEXXE] + —EX:El + e AAT X;AA;
€
2
+ EAEZTX,'AEi} + X+ Xi(Q+R)T
+X;(Q+R) + AiX;,

S T 5. l Ty, T
xit = (1 +€)A, XiAp, + (1 + p VAA) XiAAp,)
1
Xi2 = (1 + A} XiAp, + (1 + g)AAhTL,X,»AAhi)

1 _
xiz = =5 (Chi+ CiiOR
®; = 2C{AL XiAgi + AALXiAA i + Egi
X X;iEL + AELXiAEq + 3(eALXAL
1 T T T
+ EAAiniAAqi) + ZEEq,‘Xl'Eqi
1 T T
+ gEiniEqi + EAAiniAAqL’
+ 2 AETX,AE J+Xx71c,
¢ S gt in b i S A
+X:(Q+RT +X{(Q+R),
®; = CHALXAL + AALXAAL

i
+ EgiXiEj; + AELXiAEy + 3(eALXAL
1 T T T
+ EAAqL'XiAAqL') + 26EiniEqi
1 T T
+ EEiniEqi + EAAin,'AAqL‘
2
+ S AEGXAEG) + X GG
+X(Q+RT +X;(Q+R) — X, wx;,

Wi = VAKX, VvV ARX, - oV AiNKG

w; = diag(X1, Xa, - - -, Xi—1, Xi» Xi+1, Xn)

1
Ui = (14 OAG iy — (1 + AL XiAA,,
O

Theorem 3.2 The  system (4) is  stochastically  stabilizable, if
R>0,Q>0,W=>0,X; >0,P; >0, Y;,i=1,2,---,s exists and the disturbance
w(t) = 0, then controller K; = Y; X~ Lis exists such that the following inequality holds

Page 14 of 24
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(A; + B)Pi + (A; + B)TP; + E;P; + E,'Tpi

S
+ATQ+RA; + > AyP+AyPi+ AL P,
j=1

+E P+ ELPi+ AL(Q+ RA, — W
+ Pi(Ay, + En)) — Pi(Ag, + Eg) < 0,
Pi(Aj, + Ep,) > 0,Pi(Ay, + Eg) > O,
W =Q-AL(Q+RA, > 0.

Proof 1t follows that Theorem 3.1, E; can be written as

Qn QL Qi3
Bi=| Qu Qu QL |
QL Qs Q33

Q11 = Ci{(Ai + BuK) T Pi(A; + BuiKi) + A(A; + B1iKi) ' P;A(A; + BuiKy)
1
+ E;PE] + AETP;AE; + 3(e(A; + BuKi)Pi(A; + B1,K) T + JAM
1
+ Buki) " Pib(A; + B1iKi) + 2¢EiPE] + “EPE] + €(A(A; + Buki) Py

2 S
x A(A; + ByK;) + EAELTPiAEi} + G+ PiQ+ R +P(Q+R) + Y AP
j=1

Q= Ci{(Agi + Big K PilAgi + B1g, Ki) + (A(Agi + B1g,K)) " PiA(Agi + B1g, K
1
+ EuPiE}; + AELPiAE, + 3(e(Agi + By, K) " Pi(Agi + B1g,Ki) + S(AAg

i

1
+ B1g, K) " PiN(Agi + B1g,Ki)) + 2€Egi x PiE; + gEquiEqTi + €(A(Agi + Big KT

4
2
x PiA(Agi + B1g,Ki) + EAE;PL-AEW} +C P+ Pi(Q+ R +P(Q+R) - W
Qo1 = — 2(Cil(Agi + Big K" Pi(Agi + By, Ki) + (A(Agi + B1g, Ki) ' PiA(Agi + B1g,Ki)
1
+ EgiPiEj; + AELPiAE; + 3(€(Agi + B1g, K) " Pi(Agi + B1g,Ki) + -(AAg
1
+ B1g, Ki) " PiN(Agi + B1g,Ki) + 2€Eq; x PiEJ; + gEquiE;; + €(A(Agi + Big KT
2
X Pib(Agi + BigKi) + ZAEgPiMEG} + C P+ PUQ+ R + Pi(Q+ R)),
1
Qo3 = — (1 +€)(Agi +Big, KD Pi(Agi + B1g,Ki) — (1 + ) (A(Ay;
€
+ B3, K)) ' PiA(Agi + B, Ko,
Qa1 = (14 €)(Ap, + Bin K Pi(Ap, + By, Ki)

1
+ (4 (A, + BinKi) T PiA(Ay, + By Ko,

1 _
Q33 = — E(Chi + Chil)R

It is noting that above inequality and Theorem 3.1 plays an important role in proving
stability of H°® control system. O

Page 15 of 24
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The robust H, control

Theorem 4.1 Given a scalary > 0,Y;,i =1,2,...,s and K; = Yinl are exist in Hao
control, there exist positive definite matrices P; > 0,R > 0,Q > 0,E; > 0, W > 0 such
that system (1)—(3) is roust stochastically stable with given disturbance attenuation level y,
if the following inequality holds

(;li + Ei)Pi + (Zl + El’)TPi + EiPl' + EiTPl'
S
+ATQ+RA; + Y APy +AqPi+ AL P
j=1
+EuPi+ELPi+ AL(Q+ RA, — W
+ Pi(Ay, + Ep) — Pi(Ag, + Eg) — y*1 <0,
Pi(Ay, + Ep) > 0, Pi(Ag + Eg) >0

and

W=Q—Al(Q+RA, >o0.

Proof Ason Theorem 3.1 the system (4) with g € L>([—1, 0] : R") exists in Hoo,
to prove Hy constraint of system (4) is mean-square stochastically stable, we need
Lyapunov functional V(x(¢), ¢, r(¢)) and
t
J (&) = E{ / 2" (5)z(s) — y*vT (s)v(s)]ds). (15)
0
It follows from Dynkin’s formula and fact that x(0) = O, then
t
EWV 0, 8,70) = EL [ LV 56,5763 (16)
0

Substitute (16) in (15), we get

t
J(t) = E{ / 27 (9)z(s) — y2vT (s)v(s)
0
+ LV (x(s),s,7(s))ds} — EV(x(t), t, r(t))

t 17)
< Ef / [z7 (9)z(s) — y>v (s)v(s)
+L$/(x(S),s, r(s))ds}.
Now let
N ) =" 0,27 — @, x" @ — b, w" (®)], (18)
Substitute (18) in (17), we get
2T (9)z(s) — y>w’ ()w(s) + LV (x(s), 5,7(5)) 19

< el (s)Ti&(s),

where
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and

If

Y Vi Y1z 0 Vs
Va1 Voo Vi Yoa O
Ti=|vL vs2ay33 0 0 |,
0 Vi O VYaa O
Y5 0 0 0 yss

V1 = Cil(A; + Buk) T Pi(A; + Buik;) + A(A; + B1iK:) TP A(A; + BuiK;)
1
+ EPEL + AETPAE; + 3(e(A; + BiiK;) x Pi(A; + BiKp)™ + SAUi+ BiK)”
1
x P;A(A; + By;K;) + 2¢E;P;EF + g15,1)1»;5,? + e(A(A; + B1iK))TPiA(A; + B1iK)

2 B s
+ ZAE[PAE} + TP+ PUQ+ R+ PAQ+R) + ) Ay
j=1

Y2 = Ci{(Agi + Big,K) " Pi(Agi + B1g, Ki) + (A(Agi + B1g, Ki) " PiA(Agi + B1g, Ki)
+ EgiPiEg; + AELPiAEg + 3(e(Agi + Big, K Pi(Agi + B1g,Ki) + %(A(Aqi
+ B14,K) PiA(Agi + Big,K)) + 2€¢EgiPiEy; + %EquiE,,Ti +e(AAy
+ B1g, K)) ' PiA(Agi + B1g,K) + §AE; x PiAEg) + C'p;

+P,(Q+ R +P(Q+R) - W
Yo = — 2(Ci{(Agi + B1g, KT Pi(Agi + B14,Ki) + (A(Agi + B4, Ki) T PiA(Agi + B1g, K))

+ E4PiE]; + AELPiAEq; + 3(e(Agi + B1g, Ki) " Pi(Agi + B1g, Ki) + %(A(Aqi
+ B1g, K) ' PiA(Agi + B1g, Ki) + 2€EiPiEL; + %EquiEg + €(A(Agi + B1g K) ' P;
x AAgi + Big;Ki) + %AE;P,-AEW} +C P+ PQ+ R +Pi(Q+R)),

Vo3 = — (14 €)(Agi + Big, K) " Pi(Agi + B1g Ki) — (1 + %)(A(Aqi + Big K)) ' P;

X A(Aqi + quil(i):
Vo4 = DBy, PiBag, + AB3, PiAByy, + Hig,PiH [, + AH{, PiAH)g + 3(eBag,P;

T 1 T T 1 T T
X BZ%‘ + EABZq,vPiABth) + 2€H1quiqul_ + ngquiqui + fAquiPiABZqi
2 T -1
+ gAqul_PiAqui} +D2i P —1
1

va1 = (1+ €)(Ay, + By, K) T Pi(Ap, + By K) + (1 + z)(A(Ah,v + By, Ki) T P;

X AAy, + Buy Ko,

1 _

Y33 = — E(Chi +CHR,

Yaa =1,
Y15 = Doi{BL,PiBoi + ABLP;ABy; + HyPiH{; + AH{ P AHy; + 3(eByP;BY;

N oyl Yy T Tp AR 1+ 2 AHT P A, -1p.
+ ~ABYPiABy) + 2eHyPiHY + —HuiPiH; + € ABLPiAByi + = AH{;PiAHy) + D3Py

Q55 = — y2IL
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t t
/ ELT (9)2(s)]ds < 7 / [wT (s)w(s)lds,
0 0

and subsequently that E|z(¢)| < y|lw(¢)| 2, therefore closed-loop system (1-3) is
robust stochastically stable. If Theorem 4.1 can be applied in the form of Schur comple-
ment, then J(¢) < 0,T; < 0,forallt > 0.Let P; = Xi_l, Y = KiX;, T; = diag(X;, 1,1, 1,1),
then multiplying (19) by T; and diag(P;” L 1,1,1,1), we can find the coupled matrix ine-
qualities as follows

xi ©; Wy 0 Wy
o —o;; 0 @I o0
vl 0 —w 0 0 <0, (20)

0

w0 0 0 —yu

where
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X2i n’
L= _ > 0,
x2i = CHAX] + B Y )(AiX; + BiiY) + AAX] + B Y )AAX; + B1Yy)
1

+ EXGEF + AEFX;AE; + 3¢ (AiX; + BuY)(AX] +BuYT) + EA(AL»X,.T
T T 1 T T T

+ By;Y; YAAX; + B1;Y;) + 2¢E;X;E; + gEiXiEi +e(AAX; +BiiY;))
B VY P AET Y AR 4 x—le—1y 4y Ty—1

X AAX; + BiYp) + ZAET XGAE} + X7 CTIXG + X Q+ BTX;

+Xi(Q+RX; ' + AiX;,

I1

= (1 + €)(Ap, + By K" PilAp, + Bu K + (1 + %XA(AI«L- + Bu K"

x P;A(Ay, + By K7,

s = 2Cil(Agi + Big, KD Pi(Agi + Big,Ki) + (A(Agi + Big.K) Pid(Agi + Big o)
+ EiPiEf + AELPiAE; + 3(€(Agi + B1g, K) " Pi(Agi + B4, Ki)

1 1
+ E(A(Aqi + Big, K) ' PiA(Agi + B1g,Ki) + 2€EqiPiE); + gEquiE;

2
+ €(A(Agi + B1g, K) T PiA(Agi + B1g, K) + EAE;;PiAEqi} +C P
+P(Q+RT 4+ Pi(Q+R)),
®1; = Cil{(Agi + B1g, K) T Pi(Agi + B14,Ki) + (A(Agi + Big, K)) PiA(Agi + B1g,Ky)

1

1
+ EgPiE]; + AELPIAE, + 3(e(Agi + B1g, Ki) " Pi(Agi + By, Ki) + (AU
1
+ B1gK0)) " Pif\(Agi + B1g,K) + 2€Eqi X Pillg; + —EqiPiEy; + € (A(Agi + Big, )"

qi

Wi = vV AanXi, VARXy, -V AiNXG,

wi = diag(X1, Xo, . . ., Xi—1, Xi, Xi+1, XN),
®y; = Dy;{BL, o PiBag, + ABZqu_P,' AByg, + qul,P,»Hqui + AHquiPiAqui + 3(eByy,

2
x PiA(Agi + Big,K) + EAETP,'AEq,'} +C P+ P(Q+RT +P(Q+R) - W

T 1 T T 1 T
X Piqui + EABZq,'PiAqui) + Zequ,'PiHmi + ngql.P,'qui
T INTL -1
+ €ABJ PiByg, + ~AH{ PiH1g) + Dy i — 1

Wy = Doi{BLP;By; + ABLP;ABy; + Hy;PiHL + AHLP; AHy; + 3(eBo;

7,1, o7 r, 1 T
X Pl'BZi + gABZinABZi) + 26H1iPiHU + ngiPiHlj

2 _
+ €ABLPABy; + - AH{;P;AH;} + D5;'P:.
Hence, system (1)—(3) is roust stochastically stable with y attenuation level. O
Numerical examples

In this section, we give some numerical examples to demonstrate the effectiveness of the

proposed results.
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Example 1 Consider the neutral system (1)—(4) with K = Y,’X[l, and assume that
following uncertainty matrix holds, the system (1) is stable if we choose state x(¢) in R
and Markov chain r(¢) in S = {1, 2, 3}.

ai=[07 o1 | emi=[03 751
AL = :o(.)1 oﬂ’AAqi - [_(1)'2 35.3}’
Abqi = :—8.2 0%4]’Q: {81? :813}'
=] 701 03 ami= {05 01 )
w =[50 m= [34.3]
Bui= |01 03 | B = | 5203
ry=| oy 03| cu=on

By Theorem 3.2, the closed-loop system (1-4) is stochastically mean square stable with
respect of above uncertainty. The stability trajectory of (1)—(4) is shown in Fig. 1 (when
€ = 1). This example shows that the value of x; = x(¢), xp = x(t — q) and x3 = x(t — h)
and we point that proposed algorithm result is more convenient in delayed sampled data
and stochastic parameter systems. The responses of state feedback gain are

K = 772972 — 205.6894]’

| 206.8689 121.4651

x = | 192423 228123
17| —22.8123 122453 |’

y, — | 6:3124 —9.0166
£ 9.0683 6.3124

This objective is developed in MATLAB-LMI Control Toolbox.
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Example 2 Consider the neutral system (1)—(4) with K = Y,’X[l, and assume that
following uncertainty matrix holds, the system (1)—(4) is roust stochastically stable with
y attenuation level if we choose state x(¢) in R? and Markov chain () in § = {1, 2, 3}.

aai={07 532 ama =03 203
AL = :0(.)1 0%4}“‘1" - {_(1)'2 _0.33},
Alqi = :—8.2 0%4]’Q= {g:i’ :gﬂ’
R=| 20103 ) 2= {0357
w= o8] B=]0303)
Bui=| 01 03 | B = | 02 03
ry=| 05 03] Cn =01

Dgi =0.2, Yy = 0.0517.

By Theorem 4.1, the closed-loop system (1)—(4) is roust stochastically stable with y atten-
uation level with respect of above uncertainty. The stability trajectory of (1)—(4) is shown
in Fig. 2 (when € = 0.25) and system responses feedback gain is showed in below and
the convergence level of control design is showed in Table 1. This example shows that
the value of x1 = x(£), x2 = x(t — q) and x3 = x(¢ — k) and we point that proposed algo-
rithm result is more convenient in delayed sampled data and comparison is made some
of the references at convergence level.

K — [135.0374 — 232.7725
P71 2341072 244.2918 |’
[ 29.3426 —25.8160]

—25.8160 16.2453

y, — | 83124 —9.0166
1= 9.0683 8.3255

Remark 1 In example 1 if Dy; value is { é 8} and y = 1and in example 2 if Dy; value is

[ 0(')2 8 } and y = 0.0517, then comparing these two example of K;, X; and Y;, values, only

example 2 gives less conservative. If we choose more than (or) less than of 0.2 in Dy, the
system trajectory is not vanishing. And also comparing reference [2, 22, 23], the existing
result is more accurate. This example shows that our method could be lower attenuation
level than existing result [2, 22, 23].
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25 , : . : , , , . .
X
20t 24
X3
15} -
10f .

_5 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Fig. 1 The behavior of state response x; (t) = x(t),x2(t) = x(t — h), x3(t) = x(t — q)

25 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Fig. 2 The disturbance w(t), when e = 0.25.

Table 1 The convergence level ate = 0.5

Ref. no Convergence level e value
[2] 338039 05
[9] 3.06891 0.5
[17] 3.02053 0.5
[22] 421003 0.5
[23] 394212 05

Proposed algorithm result 2.18320 0.5
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Conclusions

In this article, we looked into the Markov chain-based design of stochastic neural state
delay systems. It offers predetermined uncertainties and stochastic neutral system’s dis-
crete state space delay is stochastically mean square stable. In the H, control design, the
output feedback is used, whereas the LMIS filters design was employed to demonstrate
robust stochastic stability. The design challenges were to turn a stochastic system’s state
space delay into neutrality and solve a few reduced-order errors that converge to zero.
Compared with the previous works, the main results of this paper have several features:
(i) time delays can exist in control input and the measurement output, (ii) The uncer-
tainty can appear in all system matrices. The proposed systems with the H, control
method can be achieved a lower attenuation level using the (iii) delay differential method
[2]. The future research will be development of stabilization of some fractional delay sys-
tems of neutral type. The mathematical examples have shown significant improvements
over some existing results.
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