
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Ravi Kumar et al. 
Journal of Electrical Systems and Inf Technol           (2023) 10:39  
https://doi.org/10.1186/s43067-023-00106-0

Journal of Electrical Systems
and Information Technology

The robust H∞ control of stochastic neutral 
state delay systems
Rajagounder Ravi Kumar1*, R. Naveen2, V. Anandhi3 and A. Sudha4 

Abstract 

In this paper, the resilient stochastic neutral state delay system with the Markov chain 
problem is examined. It offers output feedback control based on discrete state space 
delay and uncertainty that appear under traditional delay-independent conditions 
and exist under neutral stochastic state delays. Lyapunov theory can be used to solve 
the formulation xc(t) = x(t)− Cx(t − τ) for the intended H∞ control of a stochastic 
model. Its stochastically mean square stability is shown using linear matrix inequalities 
(LMIs). The efficiency of the suggested strategy is shown by simulation results.
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Introduction
Over the past few decades, neutral type stochastic state delay approach has become one 
of the most popular control strategies for a class of deterministic strict-feedback non-
linear systems. The neutral type schemes [2–6, 13, 16, 19] are all significant examples. 
Since stochastic neutral models are essential for many applications in engineering and 
research, numerous control mechanisms have been developed to ensure probability sta-
bility. In this study, robust stochastic state stability was established, and a neutral-type 
delay system was used in the design process together with H∞ control.

For stochastic neutral delays, there are two different stability analyses: one is delay-
dependent and contains information on delay sizes [3] through [9, 16, 17]; the other 
is delay-independent and can be applied to delays of any size [13]. Both employ LMI 
descriptions as part of their optimization techniques. In [10, 11], it is discussed how 
mixed nonlinear odd-even effects and arbitrary switching effects can be used to pro-
duce stochastic stability of finite duration. Time delays and parameter uncertainty 
are issues with the stochastic model’s H∞ control; these issues were fixed when state 
feedback controllers could be constructed with the assumption that all state varia-
bles were present. The results cannot be applied if portions of the real states are una-
vailable. In [18] Introduced decomposition matrix technique with Jensen’s integral 
inequality, Peng-Park’s integral inequality, Leibniz-Newton formula and proved expo-
nential stability of H∞ performance level. In this paper, all the inequalities are exist 
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in x(t) = f (t, xt), do not given any importance for neutral delay. In [22] investigated 
finite-time bounded (FTB) tracking control for a class of neutral systems. Firstly, the 
dynamic equation of the tracking error signal is given based on the original neutral 
system. Then, it combines with the equations of the state vector to construct an error 
system, where the reference signal and the disturbance signal are fused in a new vec-
tor. The error system, input–output finite-time of the closed-loop system is proved 
stability by utilizing the Lyapunov–Krasovskii functional. The finite-time stability 
conditions are formulated in linear matrix inequalities (LMIs). It does not involved 
any neutral delay system.

The conventional delay-independent condition, which calls for a controller design with 
a uniformly sized time delay, is the only one that is used by the techniques. All physical 
systems cannot be applied because uniform time delay is not always present. To achieve 
less conservative delay-dependent conditions, many different approaches have been 
tried. An efficient stochastic differential system is determining the size of the delay under 
conservative assumptions of neutral type. The stability issue, however, clearly hinges on 
time delay because it is well known that a certain delay-independent criterion fails. It is 
required to show the time delay in the control design in order to produce delay-depend-
ent conditions, which is necessary to get over this block [5, 7, 8, 12, 14, 15, 17–19, 21].

However, Chen et al. [2], Niculescu [19] studied the delay-dependent exponential sta-
bility of stochastic systems can similarly to x(t), which is stochastically stable in a deter-
ministic manner. However, the presence of neutral stochastic case makes things more 
complicated and prevents the direct application of the techniques [6, 9, 17] of all deter-
ministic state variables to a stochastic neutral system. Regardless of the parameter uncer-
tainties, which have not yet been fully investigated, the stability criteria are dependent 
on dynamic output feedback controllers recommended by disturbance attenuation level; 
however, it is still an open and difficult problem. In this study, we demonstrated that the 
cap is stochastic by demonstrating that xc(t) = x(t)− Cx(t − τ ), y(t) = f (t, xt).

The paper is organized as follows. In “Preliminary modeling” section contains prelim-
inary results. Some sufficient conditions are constructed for stochastic neutral system 
which is given in “Main models” section. In “The robust H∞ control” section, the stabil-
ity of state delay with H∞ control of stochastic neutral system is given. In “Numerical 
examples” section presents two numerical examples to show the validity of the proposed 
results and some conclusions are drawn in “Conclusions” section.

Notations In this paper, Rn and Rn×m denote, the n dimensional Euclidean space, 
respectively, and the set of all n×m real matrices; L2[0,∞) is the space of square 
integrable on the interval [0,∞). The Euclidean norm | · | is in Rn and C([−l, 0] : Rn) 
which denote the family of continuous function φ form [−l, 0] to Rn with the norm 
�φ� = sup

−l≤θ≤0 |φ(θ)|, and I denote the compatible dimension identity matrix. 
The notation X ≥ Y  (respectively, X > Y ) where X and Y are symmetric matrices, 
which is meant that X − Y  is positive semi-definite (respectively, positive definite). 
The matrix A denotes the transpose of �max and �min , it stands for eigenvalue of maxi-
mum and eigenvalue of minimum respectively and the operator norm is denoted by 
�A� = sup{|Ax| : |x| = 1} =

√
�max(ATA). The notation (�,F , {F t}t≥0,P) is complete 

probability space with a filtration {F}t and satisfying the usual conditions (i.e., the fil-
tration contains all P-null set is right continuous). The space LP

F′
([−l, 0] : Rn) denotes 
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the family of all F′-measurable C([−l, 0] : Rn)-valued random variables. The value 
ϕ = {ϕ(θ) : −l ≤ θ ≤ 0} is related to sup

−l≤θ≤0 E|ϕ(θ)|
p < ∞.

Preliminary modeling
Let {r(t), t ≥ 0} be a right continuous Markov chain on the probability space taking 
values in a finite state space S = {1, 2, . . . ,N }, then following transition probabilities 
are holds [20];

where � > 0 and �ij ≥ 0 is the transition rate from i to j if i  = j while � = −

∑
j �=i �ij .

If Am
= [amij ]n×n and AM

= [aMij ]n×n, satisfying amij ≤ aMij , ∀1 ≤ i, j ≤ n, the inter-
val matrix [Am,AM

] is defined by [Am,AM
] = {A = [aij : a

m
ij ≤ aij ≤ aMij , 1 ≤ i, j ≤ n}. 

If A,A ∈ Rn×n, ��A� ≤ A is a nonnegative matrix, then [A± A] denotes the interval 
matrix [A− A,A+ A]. In fact, any interval matrix [Am,AM

] has a unique representa-
tion of the form [A± A], where A = ( 12 )(A

m
+ AM), then A = ( 12 )(A

m
− AM).

For each i ∈ S and the interval matrices [Ai ± Ai], [Bi ± Bi], [Ci ± Ci], [Di ± Di] are 
exists in S,   then consider n-dimensional stochastic neutral state delay system with 
Markovian switching structure as

where x(t) ∈ Rn is the state vector, v(t) ∈ Rn×m is the control input and w(t) ∈ Rq is an 
exogenous disturbance, z(t) ∈ Rp is an output controller, A,Ah,Aq ,B1, B2,C ,Ch,D1,D2 
are known real constant matrices with appropriate dimensions, q > 0, h > 0 are con-
stant time delays and q may not be equal to h,  here l = max{h, q} and φ(θ) are continu-
ously differentiable on the interval [−l, 0], dω(t) is a Brownian motion and E,Eh,H1 are 
stochastic constant matrices.

Main models
Consider state feedback controller is

(1)P{r(t +�)=j/r(t)=i}=

{
��ij + o(�), if i �= j,
1+��ij + o(�), if i = j,

(2)

d[x(t)− (Aq(r(t))+�Aq(r(t)))(t − q)]

= [(A(r(t))+�A(r(t)))x(t)+ (Ah(r(t))

+�Ah(r(t)))x(t − h)+ (B1(r(t))

+�B1(r(t)))v(t)

+ (B2(r(t))+�B2(r(t)))w(t)]dt + [(E(r(t))

+�E(r(t)))x(t)+ (Eh(r(t))+�Eh(r(t)))

× x(t − h)+ (H1(r(t))+�H1(r(t)))w(t)]dω(t),

z(t) = (C(r(t))+�C(r(t)))x(t)+ (Ch(r(t))

+�Ch(r(t)))x(t − h)+ (D1(r(t))

+�D1(r(t)))v(t)+ (D2(r(t))

+�D2(r(t)))w(t),

xt0 = x(t0 + θ) = φ(θ), θ ∈ [−l, 0],

(3)v(t) = Kix(t), ∀ Ki ∈ Rn×m, i = r(t),
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to prove stability of system (2), the following assumptions are need. In this case the nota-
tion, A(r(t)) will be denoted as Ar and so on and time varying uncertainties are assumed 
as

where �Ar ,�Aqr ,�B1r ,�B2r ,�Ehr ,�Cr ,�H1r , �H2r , �D1r ,�D2r are time varying 
uncertainty parameters. The resulting of the uncertain closed-loop system (2)–(3) can 
be written as

In this case, the controller access are depending on state response x(t) and the jumping 
process r(t). The solution of system (1)–(4) at time t is x(t,φ, r(t), v,w) which is related to 
the initial conditions φ and jumping process r(t),  and the control input v(t),  disturbance 
w(t), respectively, and x(0, x0, r(0), v,w) represents solution of system (4) at time t = 0.

Definition 3.1 The state stochastic delay system (4) with q, h ∈ L2([−l, 0] : Rn), and for 
every φ ∈ Rn exists, then solution x(t,φ, r(t), v,w) is said to be mean-square stochasti-
cally stabilizable if

and is said to be robustically stochastic stable with disturbance attenuation γ , 
if it is mean-square stochastically stabilizable under zero initial conditions of 
E�z�L2 ≤ γ �w(t)�L2 , then for all nonzero w ∈ L2[0,∞) such that

Let

Ãi = Ar +�Ar , B̃1i = B1r +�B1r ,

Ẽi = Er +�Er , Ẽhi = Ehr +�Ehr ,

B̃1i = B1r +�B1r , B̃2i = B2r +�B2r ,

C̃i = Cr +�Cr , Ãqi = Aqr +�Aqr ,

C̃hi = Ch +�Ch, D̃1i = D1r +�D1r ,

D̃2i = D2r +�D2r , H̃1i = H1r +�H1r ,

H̃2i = H2r +�H2r ,

(4)

d[x(t)− Ãqi(t − q)]

= [Ãix(t)+ Ãhix(t − h)+ B̃1iv(t)+ B̃2iw(t)]dt

+ [Ẽix(t)+ Ẽhix(t − h)+ H̃1iw(t)]dω(t),

z(t) = C̃ix(t)+ C̃hix(t − h)+ D̃1iv(t)+ D̃2iw(t),

xt0 = x(t0 + θ) = φ(θ), θ ∈ [−l, 0].

lim
t→∞

E
{∫ T

0
(x(t,φ, r(t), v)− Aqix(t − q))T

× (x(t,φ, r(t), v)− Aqix(t − q))dt
}
≤ xT0 Px0,

∫
∞

0
E[z(t)T z(t)]dt ≤ γ 2

∫
∞

0
w(t)Tw(t)dt.
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and

and let Gzw denote the system exogenous input w(t) and control output z(t), then H∞

-norm of the closed-loop system (1)–(4) is equivalent to ‖Gzw‖ < γ .

The following lemma provides some sufficient condition for stochastic stability of H∞ 
control system.

Lemma 3.1 [20] Let Q1 be a nonnegative definite symmetric matrix, there exists an 
interval matrix Ar ,�Ar ∈ [A± A] such that

and

Proof It is well known that, if Ar = 0 or �Ar = 0, then [1]

If

for any ǫ > 0, then

�w�2 =
{∫

∞

0
wT (t)w(t)dt

}

�z�2 =
{∫

∞

0
zT (t)z(t)dt

}
,

(5)
(Ar +�Ar)Q1(Ar +�Ar)

T

≤ (1+ ǫ)AT
r Q1Ar + (1+

1

ǫ
)�AT

r Q1�Ar

(6)

(Ar +�Ar + Er +�Er)Q1(Ar +�Ar + Er +�Er)
T

≤ AT
r Q1Ar +�AT

r Q1�Ar + ErQ1E
T
r

+�ErQ1�ET
r + 3(AT

r Q1Ar +
1

ǫ
�AT

r Q1�Ar)

+ 2ǫErQ1E
T
r +

1

ǫ
ErQ1E

T
r + ǫ�AT

r Q1�Ar

+

2

ǫ
�ET

r Q1�Er .

(Ar +�Ar)Q1(Ar +�Ar)
T

≤ AT
r Q1Ar +�AT

r Q1�Ar + ArQ1�AT
r +�ArQ1A

T
r .

AT
r Q1�Ar + ArQ1�AT

r ≤ ǫAT
r Q1Ar

+

1

ǫ
�ArQ1�AT

r ,
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And similarly if either Ar ,Er = 0 or �Ar ,�Er = 0, then

�

Theorem  3.1 Consider the neutral uncertain state delay system (4), if Markovian 
switching at v(t) = 0 and w(t) = 0 such that

There exist matrices Pi > 0,Q > 0,R > 0,W > 0 and

such that system (4) is stochastically stable.

(Ar +�Ar)Q1(Ar +�Ar)
T
≤ (1+ ǫ)AT

r Q1Ar

+ (1+
1

ǫ
)�AT

r Q1�Ar .

(Ar +�Ar + Er +�Er)Q1(Ar

+�Ar + Er +�Er)
T

≤ AT
r Q1Ar +�AT

r Q1�Ar + ArQ1�AT
r

+�ArQ1A
T
r + ET

r Q1Er +�ET
r Q1�Er

+ ErQ1�ET
r +�ErQ1E

T
r +�AT

r Q1Ar

+�ET
r Q1A

T
r + ArQ1�AT

r + ErQ1�AT
r

+�ErQ1�AT
r + ArQ1E

T
r +�ArQ1E

T
r

+�ErQ1E
T
r + ArQ1�ET

r +�ArQ1�ET
r

+ ErQ1�ET
r + ErQ1A

T
r

≤ AT
r Q1Ar +�AT

r Q1�Ar + ErQ1E
T
r

+�ET
r Q1�Er + 3(ǫArQ1A

T
r +

1

ǫ
�AT

r Q1�Ar)

+ 2ǫErQ1E
T
r +

1

ǫ
ErQ1E

T
r

+ ǫ�AT
r Q1�Ar +

2

ǫ
�ET

r Q1�Er .

(7)
d[x(t)− Ãqi(t − q)]

= [Ãix(t)+ Ãhix(t − h)]dt + [Ẽix(t)+ Ẽhix(t − h)]dω

xt0 = x(t0 + θ) = φ(θ), θ ∈ [−l, 0], r(0) = r0, r(t) = i.

ÃiPi + ÃT
i Pi + ẼiPi + ẼT

i Pi + ÃT
i (Q + R)Ãi

+

s∑

j=1

�ijPj + ÃqiPi + ÃT
qi
Pi + ẼqiPi + ẼT

qi
Pi

+ ÃT
qi
(Q + R)Ãqi −W + Pi(Ãhi + Ẽhi)

− Pi(Ãqi + Ẽqi) < 0,

Pi(Ãhi + Ẽhi) > 0,Pi(Ãqi + Ẽqi) > 0,

W = Q − ÃT
qi
(Q + R)Ãqi > 0,
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Proof The Lyapunov functional of the above system is (see [8])

It can be derived by Ito’s formula;

where LV (x(s), s, r(s)) = V̇ (x(s), s, r(s)), L is the infinitesimal generator. Then

and

By Lemma 3.1 the above result can be rewritten as

V (x(t), t, r(t)) = (x(t)− Ãqix(t − q))TPi(x(t)

− Ãqix(t − q))+

∫ t

t−q
xT (τ )Qx(τ )dτ

+

∫ t

t−h
xT (τ )Rx(τ )dτ .

(8)
EV (x(t), t, r(t)) = EV (x(0), 0, r(0))

+

∫ s

0
LV (x(s), s, r(s))ds,

d

dt
V (x(t), t, r(t)) = lim

�→0

1

�
[V (x(t +�), t +�,

r(t +�) = j)− V (x(t), t, r(t))], t, t +� ∈ [0,∞)

LV (x(t), t, r(t)) = 2(x(t)− Ãqix(t − q))TPi(ẋ(t)

− Ãqi ẋ(t − q))+ xT (t)Qx(t)− xT (t − q)Qx(t − q)

+ xT (t)Rx(t)− xT (t − h)Rx(t − h) = 2(x(t)

− Ãqix(t − q))TPi(Ãi + Ẽi + Q + R)

× (x(t)− Ãqix(t − q))+ xT (t)

s∑

j=1

�ijPjx(t)

+ 2(x(t)− Ãqix(t − q))TPi(Ãhix(t − h)

+ Ẽhix(t − h))− 2x(t)TPi(Ãi + Ẽi + Q + R)

× Ãqix(t − q)− 2Ãqix(t − q)TPi(Ãi + Ẽi

+ Q + R)x(t)− xT (t − q)Wx(t − q)− xT (t − h)

Rx(t − h)+ 2(x(t)− Ãqix(t − q))Pi(Ãhi

+ Ẽhi)x
T (t − h).
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(9)

LV (x(t), t, r(t)) ≤ xT (t)[Ci{A
T
i PiAi +�AT

i Pi�Ai

+ EiPiE
T
i +�ET

i Pi�Ei + 3(ǫAiPiA
T
i +

1

ǫ
�AT

i Pi�Ai)

+ 2ǫEiPiE
T
i +

1

ǫ
EiPiE

T
i + ǫ�AT

i Pi�Ai +
2

ǫ

×�ET
i Pi�Ei} + C−1

i Pi + Pi(Q + R)T + Pi(Q + R)

+

s∑

j=1

�ijPj]x(t)+ x(t − q)T [Ci{A
T
qiPiAqi

+�AT
qiPi�Aqi + EqiPiE

T
qi +�ET

qiPi�Eqi

+ 3(ǫAT
qiPiA

T
qi +

1

ǫ
�AT

qiPi�AT
qi)+ 2ǫEqiPiE

T
qi

+

1

ǫ
EqiPiE

T
qi + ǫ�AT

qiPi�Aqi +
2

ǫ
�ET

qiPi�Eqi}

+ C−1
i Pi + Pi(Q + R)T + Pi(Q + R)−W ]

× x(t − q)− 2xT (t)[Ci{A
T
qiPiA

T
qi

+�AT
qiPi�AT

qi + EqiPiE
T
qi +�ET

qiPi�Eqi

+ 3(ǫAT
qiPiA

T
qi +

1

ǫ
�AT

qiPi�AT
qi)+ 2ǫEqiPiE

T
qi

+

1

ǫ
EqiPiE

T
qi + ǫ�AT

qiPi�Aqi +
2

ǫ
�ET

qiPi�Eqi}

+ C−1
i Pi + Pi(Q + R)T + Pi(Q + R)]x(t − q)

+ 2xT (t − q)[Ci{A
T
qiPiA

T
qi +�AT

qiPi�AT
qi

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫAT
qiPiA

T
qi

+

1

ǫ
�AT

qiPi�AT
qi)+ 2ǫEqiPiE

T
qi +

1

ǫ
EqiPiE

T
qi

+ ǫ�AT
qiPi�Aqi +

2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi

+ Pi(Q + R)T + Pi(Q + R)]x(t)+ xT (t)[(1+ ǫ)

× AT
hi
PiAhi + (1+

1

ǫ
)�AT

hi
Pi�Ahi ]x(t − h)

− xT (t − q)[(1+ ǫ)AT
qi
PiAqi + (1+

1

ǫ
)�AT

qi
Pi�Aqi ]

× x(t − h)− xT (t − h)[
1

2
(Chi + C−1

hi )]Rx(t − h)

+ x(t)[(1+ ǫ)AT
hi
PiAhi + (1+

1

ǫ
)�AT

hi
Pi�Ahi ]

× x(t − h)T − xT (t − q)[(1+ ǫ)AT
qi
PiAqi

+ (1+
1

ǫ
)�AT

qi
Pi�Aqi ]x

T (t − h)

= η(t)T�iη(t),
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where

and η(t) = [x(t), x(t − q), x(t − h)]. Based on the inequality (9), mean-square stability of 
the system (3)–(4) can be proved if

where � = (x(t)− Aqi x(t − q))TPi(x(t)− Aqi x(t − q))+
∫ t
t−q x

T (τ )Qx(τ )dτ +
∫ t
t−h x

T(τ )Rx(τ )dτ .

Note that, if �i < 0, Pi > 0 and x  = 0, such that

�i =




�11 �T
12 �13

�21 �22 �T
23

�T
31 �32 �33


,

�11 = Ci{A
T
i PiAi +�AT

i Pi�Ai + EiPiE
T
i

+�ET
i Pi�Ei + 3(ǫAiPiA

T
i +

1

ǫ
�AT

i Pi�Ai)

+ 2ǫEiPiE
T
i +

1

ǫ
EiPiE

T
i + ǫ�AT

i Pi�Ai

+

2

ǫ
�ET

i Pi�Ei} + C−1
i Pi + Pi(Q + R)T

+ Pi(Q + R)+

s�

j=1

�ijPj

�22 = Ci{A
T
qiPiAqi +�AT

qiPi�Aqi + EqiPiE
T
qi

+�ET
qiPi�Eqi + 3(ǫAT

qiPiA
T
qi +

1

ǫ
�AT

qi

× Pi�AT
qi)+ 2ǫEqiPiE

T
qi +

1

ǫ
EqiPiE

T
qi

+ ǫ�AT
qiPi�Aqi +

2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi

+ Pi(Q + R)T + Pi(Q + R)−W

�21 = −2(Ci{A
T
qiPiA

T
qi +�AT

qiPi�AT
qi

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫAT
qiPiA

T
qi

+

1

ǫ
�AT

qiPi�AT
qi)+ 2ǫEqiPiE

T
qi

+

1

ǫ
EqiPiE

T
qi + ǫ�AT

qiPi�Aqi

+

2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi

+ Pi(Q + R)T + Pi(Q + R)),

�23 = −(1+ ǫ)AT
qi
PiAqi − (1+

1

ǫ
)�AT

qi
Pi�Aqi ,

�31 = (1+ ǫ)AT
hi
PiAhi + (1+

1

ǫ
)�AT

hi
Pi�Ahi ,

�33 = −

1

2
(Chi + C−1

hi )R

(10)
LV (x(t), t, r(t))

V (x(t), t, r(t))
=

η(t)T�iη(t)

�
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If

and β > 0, then

Therefore by Ito’s formula

By Gronwell-Bellman lemma the above result can be rewritten as

for all Q > 0, R > 0. As on Lemma 3.1, the following inequalities are holds

and

(11)

LV (x(t), t, r(t))

V (x(t), t, r(t))

≤ −min
i∈S

{
�min(−�i)

�max(Pi)+ q�max(Q)+ h�max(R)

}
.

β = min
i∈S

{
�min(−�i)

�max(Pi)+ q�max(Q)+ h�max(R)

}
,

LV (x(t), t, r(t)) ≤ −βV (x(t), t, r(t)).

κ{V (x(t), t, r(t))− V (x(0), 0, r(0))}

= E

∫ t

0
LV (x(s), s, r(s))ds

≤ −β

∫ t

0
EV (x(s), s, r(s))ds.

E{V (x(t), t, r(t)) ≤exp(−βt)V (x(0), 0, r(0))},

E

∫ t

t−q
xT (τ )Qx(τ )dτ > 0, E

∫ t

t−h
xT(τ )Rx(τ )dτ > 0,

E{(x(t)− Aqix(t − q))TPi(x(t)− Aqix(t − q))}

= E{V (x(t), t, r(t))} − E

∫ t

t−q
xT (τ )Qx(τ )dτ

+ E

∫ t

t−h
xT (τ )Rx(τ )dτ

≤ exp(−βt)V (x(0), 0, r(0)),
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for all r(0) ∈ S. Let

Taking the limit as T → ∞, for all T ∈ [0,∞),

If Pi > 0, i ∈ S, then

where

this implies that closed-loop system (4) under the control law (3) is stochastically stable.

Form Schur complement, �i < 0, i = 1, . . . , s, if and only if

E{

∫ T

0
(x(t)− Aqix(t − q))TPi(x(t)− Aqix(t − q))dt}

<

∫ T

0
exp(−βT )dtV(x(0), 0, r(0))

=

−1

β
[exp(−βT )− 1]V (x(0), 0, r(0)).

lim
T→∞

E{

∫ T

0
(x(t)− Aqix(t − q))TPi(x(t)

− Aqix(t − q))dt}

≤

1

β
xT0 (�max(Pi)+ q�max(Q)

+ h�max(T ))x0.

lim
T→∞

E{

∫ T

0
(x(t)− Aqix(t − q))TPi(x(t)

− Aqix(t − q))dt
∣∣∣φ, r0}

≤ xT0 Px0,

P = max
i∈S

{
�max(Pi)+ q�max(Q)+ h�max(R)

β�min(Pi)

}
,
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If Xi = P−1
i , then multiplying P−1

i  by (12), we get

(12)

Ci{A
T
i PiAi +�AT

i Pi�Ai + EiPiE
T
i +�ET

i Pi�Ei

+ 3(ǫAiPiA
T
i +

1

ǫ
�AT

i Pi�Ai)+ 2ǫEiPiE
T
i

+

1

ǫ
EiPiE

T
i + ǫ�AT

i Pi�Ai +
2

ǫ
�ET

i Pi�Ei}

+ C−1
i Pi + Pi(Q + R)T + Pi(Q + R)+

s∑

j=1

�ijPj

+ (2Ci{A
T
qiPiAqi +�AT

qiPi�Aqi + EqiPiE
T
qi

+�ET
qiPi�Eqi + 3(ǫAT

qiPiA
T
qi +

1

ǫ
�AT

qiPi�AT
qi)

+ 2ǫEqiPiE
T
qi +

1

ǫ
EqiPiE

T
qi + ǫ�AT

qiPi�Aqi

+

2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi + Pi(Q + R)T

+ Pi(Q + R))T (Ci{A
T
qiPiA

T
qi +�AT

qiPi�AT
qi

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫAT
qiPiA

T
qi

+

1

ǫ
�AT

qiPi�AT
qi)+ 2ǫEqiPiE

T
qi +

1

ǫ
EqiPiE

T
qi

+ ǫ�AT
qiPi�Aqi +

2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi

+ Pi(Q + R)T + Pi(Q + R)−W )−1(2(Ci{A
T
qi

× PiA
T
qi +�AT

qiPi�AT
qi + EqiPiE

T
qi

+�ET
qiPi�Eqi + 3(ǫAT

qiPiA
T
qi +

1

ǫ
�AT

qiPi�AT
qi)

+ 2ǫEqiPiE
T
qi +

1

ǫ
EqiPiE

T
qi + ǫ�AT

qiPi�Aqi

+

2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi + Pi(Q + R)T

+ Pi(Q + R))+ ((1+ ǫ)AT
qi
PiAqi − (1+

1

ǫ
)

×�AT
qi
Pi�Aqi)

T I((1+ ǫ)AT
qi
PiAqi − (1+

1

ǫ
)

×�AT
qi
Pi�Aqi)+ ((1+ ǫ)AT

hi
PiAhi + (1+

1

ǫ
)

×�AT
hi
Pi�Ahi)

T (
1

2
(Chi + C−1

hi )R)
−1

× ((1+ ǫ)AT
hi
PiAhi + (1+

1

ǫ
)�AT

hi
Pi�Ahi) < 0.
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As on LMI, the above expression can be rewritten as

where

(13)

CiXi{A
T
i PiAi +�AT

i Pi�Ai + EiPiE
T
i

+�ET
i Pi�Ei + 3(ǫAiPiA

T
i +

1

ǫ
�AT

i Pi�Ai)

+ 2ǫEiPiE
T
i +

1

ǫ
EiPiE

T
i + ǫ�AT

i Pi�Ai

+

2

ǫ
�ET

i Pi�Ei} + C−1
i Pi + Pi(Q + R)T

+ Pi(Q + R)+

s∑

j=1

�ijPj + (2CiXi{A
T
qiPiA

T
qi

+�AT
qiPi�AT

qi + EqiPiE
T
qi +�ET

qiPi�Eqi

+ 3(ǫAT
qiPiAqi +

1

ǫ
�AT

qiPi�Aqi)

+ 2ǫEqiPiE
T
qi +

1

ǫ
EqiPiE

T
qi + ǫ�AT

qiPi�Aqi

+

2

ǫ
�ET

qiPi�Eqi} + C−1
i XiPi + XiPi(Q + R)T

+ XiPi(Q + R))T (Ci{A
T
qiPiA

T
qi +�AT

qiPi�AT
qi

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫAT
qiPiA

T
qi

+

1

ǫ
�AT

qiPi�AT
qi)+ 2ǫEqiPiE

T
qi +

1

ǫ
EqiPiE

T
qi

+ ǫ�AT
qiPi�Aqi +

2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi

+ Pi(Q + R)T + Pi(Q + R)−W )−1

× (2(Ci{A
T
qiPiA

T
qi +�AT

qiPi�AT
qi + EqiPiE

T
qi

+�ET
qiPi�Eqi + 3(ǫAT

qiPiA
T
qi +

1

ǫ
�AT

qiPi�AT
qi)

+ 2ǫEqiPiE
T
qi +

1

ǫ
EqiPiE

T
qi + ǫ�AT

qiPi�Aqi

+

2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi + Pi(Q + R)T

+ Pi(Q + R))+ ((1+ ǫ)AT
qi
PiAqi − (1+

1

ǫ
)

×�AT
qi
Pi�Aqi)

TXi((1+ ǫ)AT
qi
PiAqi

− (1+
1

ǫ
)�AT

qi
Pi�Aqi)+ ((1+ ǫ)AT

hi
PiAhi

+ (1+
1

ǫ
)�AT

hi
Pi�Ahi)

T (
1

2
(Chi + C−1

hi )R)
−1Xi

× ((1+ ǫ)AT
hi
PiAhi + (1+

1

ǫ
)�AT

hi
Pi�Ahi) < 0.

(14)




Ŵi �i �1i �2i

�T
i −�i 0 0

�T
1i 0 −µi 0

�T
2i 0 0 −I


 < 0,
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�

Theorem  3.2 The system (4) is stochastically stabilizable, if 
R > 0,Q > 0,W > 0,Xi > 0,Pi > 0, Yi, i = 1, 2, · · · , s exists and the disturbance 
w(t) = 0, then controller Ki = YiX

−1
i  is exists such that the following inequality holds

Ŵi =

(
χi χi1
χi2 χi3

)
> 0,

χi = Ci{A
T
i XiAi +�AT

i Xi�Ai + EiXiE
T
i

+�ET
i Xi�Ei + 3(ǫAiXiA

T
i +

1

ǫ
�AT

i Xi�Ai)

+ 2ǫEiXiE
T
i +

1

ǫ
EiXiE

T
i + ǫ�AT

i Xi�Ai

+

2

ǫ
�ET

i Xi�Ei} + C−1
i Xi + Xi(Q + R)T

+ Xi(Q + R)+�iiXi,

χi1 = ((1+ ǫ)AT
hi
XiAhi + (1+

1

ǫ
)�AT

hi
Xi�Ahi)

T

χi2 = ((1+ ǫ)AT
hi
XiAhi + (1+

1

ǫ
)�AT

hi
Xi�Ahi)

χi3 = −

1

2
(Chi + C−1

hi )R

�i = 2Ci{A
T
qiXiAqi +�AT

qiXi�Aqi + Eqi

× XiE
T
qi +�ET

qiXi�Eqi + 3(ǫAT
qiXiA

T
qi

+

1

ǫ
�AT

qiXi�AT
qi)+ 2ǫEqiXiE

T
qi

+

1

ǫ
EqiXiE

T
qi + ǫ�AT

qiXi�Aqi

+

2

ǫ
�ET

qiXi�Eqi} + X−1
i C−1

i Xi

+ Xi(Q + R)T + Xi(Q + R),

�i = Ci{A
T
qiXiA

T
qi +�AT

qiXi�AT
qi

+ EqiXiE
T
qi +�ET

qiXi�Eqi + 3(ǫAT
qiXiA

T
qi

+

1

ǫ
�AT

qiXi�AT
qi)+ 2ǫEqiXiE

T
qi

+

1

ǫ
EqiXiE

T
qi + ǫ�AT

qiXi�Aqi

+

2

ǫ
�ET

qiXi�Eqi} + X−1
i C−1

i Xi

+ Xi(Q + R)T + Xi(Q + R)− X−1
i WXi,

�1i =

√
�i1Xi,

√
�i2Xi, · · · ,

√
�iNXi,

µi = diag(X1,X2, · · · ,Xi−1,Xi,Xi+1,XN )

�2i = (1+ ǫ)AT
qi
XiAqi − (1+

1

ǫ
)�AT

qi
Xi�Aqi .
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Proof It follows that Theorem 3.1, �i can be written as

It is noting that above inequality and Theorem 3.1 plays an important role in proving 
stability of H∞ control system.  �

(Ãi + B̃i)Pi + (Ãi + B̃i)
TPi + ẼiPi + ẼT

i Pi

+ ÃT
i (Q + R)Ãi +

s∑

j=1

�ijPj + ÃqiPi + ÃT
qi
Pi

+ ẼqiPi + ẼT
qi
Pi + ÃT

qi
(Q + R)Ãqi −W

+ Pi(Ãhi + Ẽhi)− Pi(Ãqi + Ẽqi) < 0,

Pi(Ãhi + Ẽhi) > 0,Pi(Ãqi + Ẽqi) > 0,

W = Q − ÃT
qi
(Q + R)Ãqi > 0.

�i =




�11 �T
12

�13

�21 �22 �T
23

�T
31

�32 �33


,

�11 = Ci{(Ai + B1iKi)
TPi(Ai + B1iKi)+�(Ai + B1iKi)

TPi�(Ai + B1iKi)

+ EiPiE
T
i +�ET

i Pi�Ei + 3(ǫ(Ai + B1iKi)Pi(Ai + B1iKi)
T
+

1

ǫ
�(Ai

+ B1iKi)
TPi�(Ai + B1iKi)+ 2ǫEiPiE

T
i +

1

ǫ
EiPiE

T
i + ǫ(�(Ai + B1iKi))

TPi

×�(Ai + B1iKi)+
2

ǫ
�ET

i Pi�Ei} + C−1
i Pi + Pi(Q + R)T + Pi(Q + R)+

s�

j=1

�ijPj

�22 = Ci{(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+ (�(Aqi + B1qiKi))

TPi�(Aqi + B1qiKi)

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫ(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+

1

ǫ
(�(Aqi

+ B1qiKi))
TPi�(Aqi + B1qiKi))+ 2ǫEqi × PiE

T
qi +

1

ǫ
EqiPiE

T
qi + ǫ(�(Aqi + B1qiKi))

T

× Pi�(Aqi + B1qiKi)+
2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi + Pi(Q + R)T + Pi(Q + R)−W

�21 = − 2(Ci{(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+ (�(Aqi + B1qiKi))

TPi�(Aqi + B1qiKi)

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫ(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+

1

ǫ
(�(Aqi

+ B1qiKi))
TPi�(Aqi + B1qiKi)+ 2ǫEqi × PiE

T
qi +

1

ǫ
EqiPiE

T
qi + ǫ(�(Aqi + B1qiKi))

T

× Pi�(Aqi + B1qiKi)+
2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi + Pi(Q + R)T + Pi(Q + R)),

�23 = − (1+ ǫ)(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)− (1+

1

ǫ
)(�(Aqi

+ B1qiKi))
TPi�(Aqi + B1qiKi),

�31 = (1+ ǫ)(Ahi + B1hiKi)
TPi(Ahi + B1hiKi)

+ (1+
1

ǫ
)(�(Ahi + B1hiKi))

TPi�(Ahi + B1hiKi),

�33 = −

1

2
(Chi + C−1

hi )R.
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The robust H∞ control

Theorem 4.1 Given a scalar γ > 0, Yi, i = 1, 2, . . . , s and Ki = YiX
−1
i  are exist in H∞ 

control, there exist positive definite matrices Pi > 0,R > 0,Q > 0,Ei > 0,W > 0 such 
that system (1)–(3) is roust stochastically stable with given disturbance attenuation level γ , 
if the following inequality holds

and

Proof As on Theorem 3.1 the system (4) with q ∈ L2([−l, 0] : Rn) exists in H∞, 
to prove H∞ constraint of system (4) is mean-square stochastically stable, we need 
Lyapunov functional V(x(t), t, r(t)) and

It follows from Dynkin’s formula and fact that x(0) = 0, then

Substitute (16) in (15), we get

Now let

Substitute (18) in (17), we get

where

(Ãi + B̃i)Pi + (Ãi + B̃i)
TPi + ẼiPi + ẼT

i Pi

+ ÃT
i (Q + R)Ãi +

s∑

j=1

�ijPj + ÃqiPi + ÃT
qi
Pi

+ ẼqiPi + ẼT
qi
Pi + ÃT

qi
(Q + R)Ãqi −W

+ Pi(Ãhi + Ẽhi)− Pi(Ãqi + Ẽqi)− γ 2I < 0,

Pi(Ãhi + Ẽhi) > 0, Pi(Ãqi + Ẽqi) > 0

W = Q − ÃT
qi
(Q + R)Ãqi > 0.

(15)J (t) = E{

∫ t

0
[zT (s)z(s)− γ 2vT (s)v(s)]ds}.

(16)E{V (x(t), t, r(t)} = E{

∫ t

0
LV (x(s), s, r(s))ds}.

(17)

J (t) = E{

∫ t

0
[zT (s)z(s)− γ 2vT (s)v(s)

+ LV (x(s), s, r(s))ds} − EV(x(t), t, r(t))

≤ E{

∫ t

0
[zT (s)z(s)− γ 2vT (s)v(s)

+ LV (x(s), s, r(s))ds}.

(18)ξT (t) = [xT (t), xT (t − q), xT (t − h),wT (t)],

(19)
zT (s)z(s)− γ 2wT (s)w(s)+ LV (x(s), s, r(s))

≤ ξT (s)Ŵiξ(s),
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and

If

Ŵi =




ψ11 ψT
12

ψ13 0 ψ15

ψ21 ψ22 ψT
23

ψ24 0

ψT
31

ψ32 ψ33 0 0

0 ψT
42

0 ψ44 0

ψT
51

0 0 0 ψ55



,

ψ11 = Ci{(Ai + B1iKi)
TPi(Ai + B1iKi)+�(Ai + B1iKi)

TPi�(Ai + B1iKi)

+ EiPiE
T
i +�ET

i Pi�Ei + 3(ǫ(Ai + B1iKi)× Pi(Ai + B1iKi)
T
+

1

ǫ
�(Ai + B1iKi)

T

× Pi�(Ai + B1iKi)+ 2ǫEiPiE
T
i +

1

ǫ
EiPiE

T
i + ǫ(�(Ai + B1iKi))

TPi�(Ai + B1iKi)

+

2

ǫ
�ET

i Pi�Ei} + C−1
i Pi + Pi(Q + R)T + Pi(Q + R)+

s∑

j=1

�ijPj

ψ22 = Ci{(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+ (�(Aqi + B1qiKi))

TPi�(Aqi + B1qiKi)

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫ(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+

1

ǫ
(�(Aqi

+ B1qiKi))
TPi�(Aqi + B1qiKi))+ 2ǫEqiPiE

T
qi +

1

ǫ
EqiPiE

T
qi + ǫ(�(Aqi

+ B1qiKi))
TPi�(Aqi + B1qiKi)+

2

ǫ
�ET

qi × Pi�Eqi} + C−1
i Pi

+ Pi(Q + R)T + Pi(Q + R)−W

ψ21 = − 2(Ci{(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+ (�(Aqi + B1qiKi))

TPi�(Aqi + B1qiKi)

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫ(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+

1

ǫ
(�(Aqi

+ B1qiKi))
TPi�(Aqi + B1qiKi)+ 2ǫEqiPiE

T
qi +

1

ǫ
EqiPiE

T
qi + ǫ(�(Aqi + B1qiKi))

TPi

×�(Aqi + B1qiKi)+
2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi + Pi(Q + R)T + Pi(Q + R)),

ψ23 = − (1+ ǫ)(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)− (1+

1

ǫ
)(�(Aqi + B1qiKi))

TPi

×�(Aqi + B1qiKi),

ψ24 = D2i{B
T
2qi

PiB2qi +�BT
2qi

Pi�B2qi +H1qiPiH
T
1qi

+�HT
1qi

Pi�H1qi + 3(ǫB2qiPi

× BT
2qi

+

1

ǫ
�BT

2qi
Pi�B2qi )+ 2ǫH1qiPiH

T
1qi

+

1

ǫ
H1qiPiH

T
1qi

+ ǫ�BT
2qi

Pi�B2qi

+

2

ǫ
�HT

1qi
Pi�H1qi } + D−1

2i Pi − I

ψ31 = (1+ ǫ)(Ahi + B1hiKi)
TPi(Ahi + B1hiKi)+ (1+

1

ǫ
)(�(Ahi + B1hiKi))

TPi

×�(Ahi + B1hiKi),

ψ33 = −

1

2
(Chi + C−1

hi )R,

ψ44 = I ,

ψ15 = D2i{B
T
2iPiB2i +�BT

2iPi�B2i +H1iPiH
T
1i +�HT

1i Pi�H1i + 3(ǫB2iPiB
T
2i

+

1

ǫ
�BT

2iPi�B2i)+ 2ǫH1iPiH
T
1i +

1

ǫ
H1iPiH

T
1i + ǫ�BT

2iPi�B2i +
2

ǫ
�HT

1i Pi�H1i} + D−1
2i Pi ,

�55 = − γ 2I .
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and subsequently that E�z(t)� ≤ γ �w(t)�L2 , therefore closed-loop system (1–3) is 
robust stochastically stable. If Theorem 4.1 can be applied in the form of Schur comple-
ment, then J (t) < 0, Ŵi < 0, for all t > 0. Let Pi = X−1

i ,Yi = KiXi,Ti = diag(Xi, I , I , I , I), 
then multiplying (19) by Ti and diag(P−1

i , I , I , I , I) , we can find the coupled matrix ine-
qualities as follows

where

∫ t

0
E[zT (s)z(s)]ds ≤ γ 2

∫ t

0
[wT(s)w(s)]ds,

(20)




χ1i �i �1i 0 �2i

�T
i −�1i 0 �T

2i 0

�T
1i 0 − µi 0 0

0 �T
2i 0 − I 0

�T
2i 0 0 0 − γ 2I




< 0,
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Hence, system (1)–(3) is roust stochastically stable with γ attenuation level.  �

Numerical examples
In this section, we give some numerical examples to demonstrate the effectiveness of the 
proposed results.

χ1i =

(
χ2i �T

i

�i −
1
2 (Chi + C−1

hi )R

)
> 0,

χ2i = Ci{(AiX
T
i + B1iY

T
i )(AiXi + B1iYi)+�(AiX

T
i + B1iY

T
i )�(AiXi + B1iYi)

+ EiXiE
T
i +�ET

i Xi�Ei + 3ǫ(AiXi + B1iYi)(AiX
T
i + B1iY

T
i )+

1

ǫ
�(AiX

T
i

+ B1iY
T
i )�(AiXi + B1iYi)+ 2ǫEiXiE

T
i +

1

ǫ
EiXiE

T
i + ǫ(�(AiX

T
i + B1iY

T
i ))

×�(AiXi + B1iYi)+
2

ǫ
�ET

i Xi�Ei} + X−1
i C−1

i Xi + Xi(Q + R)TX−1
i

+ Xi(Q + R)X−1
i +�iiXi,

�i = ((1+ ǫ)(Ahi + B1hiKi)
TPi(Ahi + B1hiKi)+ (1+

1

ǫ
)(�(Ahi + B1hiKi))

T

× Pi�(Ahi + B1hiKi))
T ,

�i = 2(Ci{(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+ (�(Aqi + B1qiKi))

TPi�(Aqi + B1qiKi)

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫ(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)

+

1

ǫ
(�(Aqi + B1qiKi))

TPi�(Aqi + B1qiKi)+ 2ǫEqiPiE
T
qi +

1

ǫ
EqiPiE

T
qi

+ ǫ(�(Aqi + B1qiKi))
TPi�(Aqi + B1qiKi)+

2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi

+ Pi(Q + R)T + Pi(Q + R)),

�1i = Ci{(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+ (�(Aqi + B1qiKi))

TPi�(Aqi + B1qiKi)

+ EqiPiE
T
qi +�ET

qiPi�Eqi + 3(ǫ(Aqi + B1qiKi)
TPi(Aqi + B1qiKi)+

1

ǫ
(�(Aqi

+ B1qiKi))
TPi�(Aqi + B1qiKi))+ 2ǫEqi × PiE

T
qi +

1

ǫ
EqiPiE

T
qi + ǫ(�(Aqi + B1qiKi))

T

× Pi�(Aqi + B1qiKi)+
2

ǫ
�ET

qiPi�Eqi} + C−1
i Pi + Pi(Q + R)T + Pi(Q + R)−W

�1i =

√
�i1Xi,

√
�i2Xi, · · · ,

√
�iNXi,

µi = diag(X1, X2, . . . , Xi−1, Xi, Xi+1, XN),

�2i = D2i{B
T
2qi

PiB2qi +�BT
2qi

Pi�B2qi +H1qiPiH
T
1qi

+�HT
1qi

Pi�H1qi + 3(ǫB2qi

× PiB
T
2qi

+

1

ǫ
�BT

2qi
Pi�B2qi )+ 2ǫH1qiPiH

T
1qi

+

1

ǫ
H1qiPiH

T
1qi

+ ǫ�BT
2qi

Pi�B2qi +
2

ǫ
�HT

1qi
Pi�H1qi } + D−1

2i Pi − I

�2i = D2i{B
T
2iPiB2i +�BT

2iPi�B2i +H1iPiH
T
1i +�HT

1i Pi�H1i + 3(ǫB2i

× PiB
T
2i +

1

ǫ
�BT

2iPi�B2i)+ 2ǫH1iPiH
T
1i +

1

ǫ
H1iPiH

T
1i

+ ǫ�BT
2iPi�B2i +

2

ǫ
�HT

1i Pi�H1i} + D−1
2i Pi.
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Example 1 Consider the neutral system (1)–(4) with K = YiX
−1
i , and assume that 

following uncertainty matrix holds, the system (1) is stable if we choose state x(t) in R3 
and Markov chain r(t) in S = {1, 2, 3}.

By Theorem 3.2, the closed-loop system (1–4) is stochastically mean square stable with 
respect of above uncertainty. The stability trajectory of (1)–(4) is shown in Fig. 1 (when 
ǫ = 1 ). This example shows that the value of x1 = x(t), x2 = x(t − q) and x3 = x(t − h) 
and we point that proposed algorithm result is more convenient in delayed sampled data 
and stochastic parameter systems. The responses of state feedback gain are

This objective is developed in MATLAB-LMI Control Toolbox.

�Ai =

[
0.7 − 0.2
0.7 0.1

]
,�B1i =

[
0.7 − 0.2
0.3 − 0.1

]
,

�Ei =

[
0 1
0.1 0.4

]
,�Aqi =

[
−0.2 0.5
1 − 0.3

]
,

�Eqi =

[
0 1

−0.2 0.4

]
,Q =

[
0.5 − 0.2
0.1 − 0.1

]
,

R =

[
−0.1 0.2
−0.1 0.3

]
,�Ahi =

[
0.8 0.2
0.3 0.1

]
,

W =

[
0 0
0 1

]
,Ehi =

[
0.1 0.3
0.2 0.3

]
,

B1hi =

[
0.1 0.1
0.1 0.2

]
,B1qi =

[
1 0.1

−0.2 0.3

]
,

�ij =

[
−0.2 0.5
0.2 0.5

]
,Chi = 0.1.

Ki =

[
77.2972 − 205.6894
206.8689 121.4651

]
,

Xi =

[
19.2423 − 22.8123
−22.8123 12.2453

]
,

Yi =

[
6.3124 − 9.0166
9.0683 6.3124

]
.
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Example 2 Consider the neutral system (1)–(4) with K = YiX
−1
i , and assume that 

following uncertainty matrix holds, the system (1)–(4) is roust stochastically stable with 
γ attenuation level if we choose state x(t) in R3 and Markov chain r(t) in S = {1, 2, 3}.

By Theorem 4.1, the closed-loop system (1)–(4) is roust stochastically stable with γ atten-
uation level with respect of above uncertainty. The stability trajectory of (1)–(4) is shown 
in Fig. 2 (when ǫ = 0.25 ) and system responses feedback gain is showed in below and 
the convergence level of control design is showed in Table 1. This example shows that 
the value of x1 = x(t), x2 = x(t − q) and x3 = x(t − h) and we point that proposed algo-
rithm result is more convenient in delayed sampled data and comparison is made some 
of the references at convergence level.

Remark 1 In example 1 if D2i value is 
[
1 0
0 0

]
 and γ = 1 and in example 2 if D2i value is 

[
0.2 0
0 0

]
 and γ = 0.0517, then comparing these two example of Ki , Xi and Yi, values, only 

example 2 gives less conservative. If we choose more than (or) less than of 0.2 in D2i , the 
system trajectory is not vanishing. And also comparing reference [2, 22, 23], the existing 
result is more accurate. This example shows that our method could be lower attenuation 
level than existing result [2, 22, 23].

�Ai =

[
0.7 − 0.2
0.7 0.1

]
,�B1i =

[
0.7 − 0.2
0.3 − 0.1

]
,

�Ei =

[
0 1
0.1 0.4

]
,�Aqi =

[
−0.2 0.5
1 − 0.3

]
,

�Eqi =

[
0 1

−0.2 0.4

]
,Q =

[
0.5 − 0.2
0.1 − 0.1

]
,

R =

[
−0.1 0.2
−0.1 0.3

]
,�Ahi =

[
0.8 0.2
0.3 0.1

]
,

W =

[
0 0
0 1

]
,Ehi =

[
0.1 0.3
0.2 0.3

]
,

B1hi =

[
0.1 0.1
0.1 0.2

]
,B1qi =

[
1 0.1

−0.2 0.3

]
,

�ij =

[
−0.2 0.5
0.2 0.5

]
,Chi = 0.1,

D2i = 0.2, γ = 0.0517.

Ki =

[
135.0374 − 232.7725
234.1072 244.2918

]
,

Xi =

[
29.3426 − 25.8160
−25.8160 16.2453

]
,

Yi =

[
8.3124 − 9.0166
9.0683 8.3255

]
.
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Table 1 The convergence level at ǫ = 0.5

Ref. no Convergence level ǫ value

[2] 3.38039 0.5

[9] 3.06891 0.5

[17] 3.02053 0.5

[22] 4.21003 0.5

[23] 3.94212 0.5

Proposed algorithm result 2.18320 0.5

Fig. 1 The behavior of state response x1(t) = x(t), x2(t) = x(t − h), x3(t) = x(t − q)

Fig. 2 The disturbance w(t),  when ǫ = 0.25.
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Conclusions
In this article, we looked into the Markov chain-based design of stochastic neural state 
delay systems. It offers predetermined uncertainties and stochastic neutral system’s dis-
crete state space delay is stochastically mean square stable. In the H∞ control design, the 
output feedback is used, whereas the LMIS filters design was employed to demonstrate 
robust stochastic stability. The design challenges were to turn a stochastic system’s state 
space delay into neutrality and solve a few reduced-order errors that converge to zero. 
Compared with the previous works, the main results of this paper have several features: 
(i) time delays can exist in control input and the measurement output, (ii) The uncer-
tainty can appear in all system matrices. The proposed systems with the H∞ control 
method can be achieved a lower attenuation level using the (iii) delay differential method 
[2]. The future research will be development of stabilization of some fractional delay sys-
tems of neutral type. The mathematical examples have shown significant improvements 
over some existing results.
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