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Abstract 

Thyroid disease (TD) develops when the thyroid does not generate an adequate 
quantity of thyroid hormones as well as when a lump or nodule emerges due to 
aberrant growth of the thyroid gland. As a result, early detection was pertinent in 
preventing or minimizing the impact of this disease. In this study, different machine 
learning (ML) algorithms with a combination of scaling method, oversampling 
technique, and various feature selection approaches have been applied to make an 
efficient framework to classify TD. In addition, significant risk factors of TD were also 
identified in this proposed system. The dataset was collected from the University 
of California Irvine (UCI) repository for this research. After that, in the preprocessing 
stage, Synthetic Minority Oversampling Technique (SMOTE) was used to resolve the 
imbalance class problem and robust scaling technique was used to scale the dataset. 
The Boruta, Recursive Feature Elimination (RFE), and Least Absolute Shrinkage and 
Selection Operator (LASSO) approaches were used to select appropriate features. To 
train the model, we employed six different ML classifiers: Support Vector Machine 
(SVM), AdaBoost (AB), Decision Tree (DT), Gradient Boosting (GB), K-Nearest Neighbors 
(KNN), and Random Forest (RF). The models were examined using a 5-fold CV. Different 
performance metrics were observed to compare the effectiveness of the algorithms. 
The system achieved the most accurate results using the RF classifier, with 99% 
accuracy. This proposed system will be beneficial for physicians and patients to classify 
TD as well as to learn about the associated risk factors of TD.

Keywords:  Thyroid disease prediction, Random forest, Healthcare, Machine learning, 
Feature selection

Introduction
TD alludes to a condition in which the thyroid, a teensy, butterfly-shaped hormone-
producing gland, emits either an excessive amount or an insufficient amount of 
these pertinent hormones [1, 2]. TD is categorized into four types: hyperthyroidism, 
hypothyroidism, thyroiditis, and Hashimoto’s thyroiditis [3–5]. A significant 
portion of adult women (between 9 and 15 percent) and men (a lesser percentage) 
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are thought to be affected. Numerous thyroid complications affect more than 20 
million Americans, according to one study [6]. Experts estimate that around 12% of 
individuals will suffer from a thyroid disorder at some point in their lifetime. Women 
are approximately five to eight time likely than males to have thyroid disorders, and 
one woman out of every eight will experience a thyroid condition over her lifespan [7]. 
Both the size and effectiveness of the thyroid gland fluctuate substantially throughout 
pregnancy. During pregnancy, the gland expands 10% broader in iodine-rich regions 
and 20–40% wider in iodine-deficient areas [8]. Hormones that regulate how the body 
utilizes energy are produced primarily from ingested iodine [9]. However, about a 
third of the entire population is concentrated in places with insufficient iodine [10, 
11].

Thyroid hormone is responsible for the production and secretion of 
triiodothyronine (T3) and thyroxine (T4), the only iodine-containing hormones 
in vertebrates [12–14]. These hormones are mandated for adequate growth, 
differentiation, and metabolic regulation [15]. The anterior pituitary gland is 
responsible for synthesizing serum thyrotrophin (TSH), which is responsible for 
regulating the production of these hormones [16]. Approximately 95% of the thyroid 
hormone present in the blood is T4, which regulates metabolism, temperament, and 
the body’s core temperature. Conventionally, T3 compensates for 5% of the thyroid 
hormone discovered in the blood [17, 18]. Hyperthyroidism, or perhaps an overactive 
thyroid, may cause a wide variety of adverse consequences. Some of these include 
vision loss, irregular heartbeat, fragile bones, and skin that becomes easily irritated 
or inflamed. Hypothyroidism, or an underactive thyroid, can lead to a wide range of 
side effects, such as an oversized thyroid, or goiter, which can impair breathing and 
ingesting, high blood cholesterol, cardiovascular disease, damaged nerves that cause 
itching, fertility problems, congenital abnormalities, and anxiety [19, 20]. By making 
predictions at an early stage, we may be able to change the course of TD, alleviate 
symptoms, and avert the irreversible effects. The severity of TD lessens grievous 
complications, and enhanced patient safety will result from an accurate assessment by 
utilizing ML algorithms [21].

Arthur Samuel defines ML as the discipline that facilitates computers to acquire 
knowledge without even being explicitly programmed [22]. In order to draw insights 
from historical data and identify meaningful patterns within complex, unorganized 
datasets, ML algorithms use a wide collection of statistical, probabilistic, and 
optimization techniques [23–25]. Automatically classifying text [26, 27], finding 
network intrusions [28, 29], figuring out what customers buy [29], predicting 
diseases [30], and giving a decision support system [31] are just some of the many 
uses for these algorithms. ML makes predictions within an acceptable range by 
using preprogrammed algorithms that acquire knowledge from their input data and 
evaluate it to enhance their performance.

It is skeptical about choosing important attributes that may be employed as risk factors 
in prediction frameworks. To construct a reliable predictive model, it is important to 
carefully select the most suitable optimal combination of parameters and ML algorithms 
[32]. To determine which features are most important, this research aims to make use 
of the thyroid dataset and three different  feature selection methods: RFE, Boruta, and 
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LASSO. This aids in eliminating the ML issues of overfitting and underfitting. In this 
study, we used a wide range of supervised models, including AB, DT, GB, KNN, and RF 
for TD classification. The key contributions of this study are as follows:

•	 With the use of ML algorithms, we devised a reliable approach for assessing whether 
a particular patient is suffering from TD.

•	 Exploring the most prominent contributing factors of TD.
•	 Several feature selection approaches, including RFE, Boruta, and LASSO, have been 

employed to extract the most pertinent features from the dataset, impacting the ML 
algorithms’ performance.

•	 The performance metrics of different models are also evaluated in this study.

Related work
Using data mining meta-classification methods which include boosting, bagging, 
stacking, and voting with a novel ensemble classifier, the authors of [33] evaluated TD 
on an extensive and convoluted dataset while comparing accuracy, sensitivity, and 
specificity. The authors conducted their suggested approach through two rounds of 
experiments to determine which of them produced the best outcomes. They compared 
the system’s performance metrics using several k values, such as 10, 15, and 20. They 
also explored the dataset using a variety of splits between the train and test sets. Thus, 
the use of different k-values in training and testing data helped them to improve the 
efficiency of the algorithms employed in this investigation.

Predictive treatment for TD is the subject of the study reported in [34]. ML methods 
are used to determine, depending on thyroid hormone parameters and other clinical 
information about the patient, whether the patient’s therapy ought to be increased, 
lowered, or left unchanged. This research aims to forecast the synthetic thyroid hormone 
therapy direction for hypothyroid individuals. Using SMOTE for pre-processing the 
dataset and the extra tree classifier (ETC) as an ML model, the best outcomes are 
achieved by partitioning the data and balancing it. The parameters produced an F1-Score 
of 84%, a Precision of 84%, a Recall of 84%, and an Accuracy of 84%.

Authors in [35] use multiple ML methods on the dataset to construct a comparison 
study to better classify TD depending on dataset attributes. In order to provide precise 
predictions for the categorization, the dataset has also been altered. The classification 
was run on both the sampled and undersampled samples to provide more precise and 
reliable comparisons. Finally, the authors achieved 94.8% accuracy on the RF method, 
the maximum accuracy conceivable with this process.

H.A.U. Rehman et  al. [36] analyze accuracy and other performance assessment 
criteria to predict and diagnose TD employing five distinct ML algorithms: KNN, DT, 
SVM, logistic regression (LR), and Naive Bayes (NB). To achieve optimal accuracy 
and performance in the initial phase of the experiment, feature selection approaches 
are omitted. The second and third stages of the research introduced feature selection 
strategies based on L1 and L2, respectively. When compared to results obtained 
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both with and without feature selection, L1-based feature selection yields the highest 
accuracy.

Using the UCI thyroid dataset, M. D. Maysanjaya et al. [37] employed six distinct 
types of ML algorithms to predict TD and evaluated the degree of accuracy among 
numerous artificial neural network approaches for classifying the type of thyroid 
gland into three categories, respectively, normal, hyperthyroid, and hypothyroid. 
The 10-fold cross-validation (CV) approach was employed in this investigation. The 
multilayer perceptron (MLP) approach outperforms others in terms of accuracy, 
recall, and the F1 measure.

Ahmed et  al. [38] introduced a comprehensive intelligent hybrid model for the 
identification of TD utilizing linear discriminant analysis (LDA), KNN weighted 
preprocessing, and an adaptive neurofuzzy inference system (ANFIS). The entire 
model is comprised of three distinct phases. The LDA portion of the LDA-KNN-
ANFIS model initially uses dimensionality reduction to get rid of extraneous 
characteristics in the disease dataset. Phase two involves applying a KNN-based 
weighted preprocessor on the input characteristics. In the last phase, preprocessed 
attributes are supplied to the ANFIS system for prediction.

An ML-based TD prediction framework focusing on the multi-class problem 
is presented in [39]. The research explores using a feature engineering strategy 
combined with an ETC model. Based on their observed effectiveness for disease 
prediction, five ML algorithms are evaluated; moreover, three DL methods 
with 16-bath and 100-epochs are also implemented in this study. In terms of the 
confusion matrix, 10-fold CV, standard deviation, accuracy level, precision, recall 
rates, and F1 score, several performance assessment approaches are assessed.

Overall, the literature review exhibits that many individuals have contributed to 
the TD prediction model. However, the main research gap we discover is that the 
majority of researchers exclusively work only with predictive models. Most of the 
previous researchers did not use the proper scaling method and also did not resolve 
the imbalanced class problem of this dataset. To address these constraints, this 
work proposes a strategy for balancing the dataset by using SMOTE and analyzes 
the optimal subset of features by using several feature selection techniques to apply 
ML approaches, offering a highly accurate TD classification solution and providing 
a complete comparison of the performance of ML-based systems that also compel 
an aspect to expand the understanding of related risk factors of TD. Various future 
directions have also been addressed.

Methodology
Dataset description

The dataset is retrieved from the UCI ML Repository [40]. It has 2,800 instances 
and 28 characteristics. Twenty of the 28 characteristics are categorical; these 
include query on thyroxine, on antithyroid medication, sick, pregnant, thyroid 
surgery, I131 treatment, query hypothyroid, query hyperthyroid, lithium, goiter, 
tumor, hypopituitary, psych, TSH measured, T3 measured, TT4 measured, T4U 
measured, FTI measured, TBG measured, and referral are categorical. Most of them 
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are categorical which are denoted by true and false. In addition, six attributes are 
continuous and are illustrated in Table 1. Based on the diagnostic findings, the total 
patient population is split into two groups: hyperthyroidism, represented by one, 
and normal, represented by 0. TD is present in 77 of the 2800 samples, while 2723 
are thyroid-negative. Some features have missing values, which are defined by the 
question mark ("?").

Model diagram

In this study, not only a highly predictive model but also the key characteristics 
of TD were identified. All the experiments were conducted on a laptop with 7th 
generation Intel Core i5 processor with a 8  GB RAM. All the necessary code was 
written in Python v3.9.10 and implemented in Jupiter Notebook. Dataset analysis was 
performed with the help of the Sklearn, Matplotlib, Pandas, and Numpy library. There 
are seven steps involved in this system’s workflow: data acquisition, data cleansing, 
dataset preprocessing, feature engineering, dataset splitting, model development, 
and outcome prediction. The main procedure of the framework began with data 
collecting. During the data cleaning phase, duplicate rows and features with more 
than 70% missing values were discarded, including any rows with just complete null 
or zero values. The dataset was scaled after missing values were imputed with the 
median value and outliers were eliminated; after that, the dataset was balanced in the 
final stage of preprocessing. The feature engineering stage, the fifth step of our system, 
consists of three feature selection methods for choosing the best features. Following 
that, the dataset was partitioned using an 80:20 ratio. The model was trained and 
tested using a variety of ML approaches in the sixth step of our proposed system. 
Finally, the classifier determines whether or not a person has TD. Figure 1 depicts the 
proposed system’s model diagram.

Preprocessing

ML algorithm’s ability to generalize performance is always significantly impacted 
by the data preparation. Datasets utilized in research tend to be flawed due to the 
presence of missing values, noise, and distortions [41]. Due to the inconsistent data, 
the dataset is skewed, and the ML algorithms find it challenging to make accurate 
predictions [42]. The dataset used to conduct this study also comprises some missing 
values and atypical values. The preparation of the dataset involved using a variety of 

Table 1  Continuous values of the dataset

Serial No Attributes name Attribute types Range or type

1 age Age of the patients 1–455

2 TSH Thyroid-stimulating hormone 0.1–39

3 T3 Triiodothyronine 0.05–10

4 TT4 free thyroxine hormone level in the blood 2–430

5 T4U thyroxine utilization rate 0.31–2.12

6 FTI free T4 index for diagnosing TD 2–345
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approaches. We eliminated the "TBG" column from the dataset since it contained 
over 70% missing values and is not providing accurate information. The median 
values are used to replace the missing data, and 0 and 1 are used to represent the two 
categories in this study. Table 1 exemplifies the presence of outliers in this dataset. 
As a result, it is preferable to discover and eliminate outliers. The interquartile range 
(IQR) is used to eliminate outliers from the dataset. Furthermore, when ML methods 
are relied on Euclidean distance [43, 44], feature scaling is a crucial component 
of the preprocessing. The robust scaler approach is used to scale attributes after 
missing data, and outliers are removed [45]. SMOTE employs to balance the dataset 
since it was highly unbalanced.

Fig. 1  Model diagram of the proposed system
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Feature selection

Overfitting, learning accuracy, calculation time, and improved model learning may 
all be addressed with feature selection. Feature selection usually is the process of 
selecting the most important features from a dataset while eliminating redundant 
or unnecessary ones in order to improve classification accuracy, reduced processing 
cost, and extract the best features for classification [46, 47]. Boruta, RFE, and 
LASSO are the three feature selection approaches employed in our proposed system 
to determine the optimal subset of features for optimized performance.

Boruta algorithm

A wrapper that was developed around the RF classification technique is known as the 
Boruta algorithm. It employs the Z score as the indicator of importance. However, the 
Z score cannot be utilized to determine the significance of any particular character 
because it requires some external reference. To do this, random properties need to 
be added to the information system. Have a "shadow" property that corresponds to 
each randomly chosen attribute and gets its value by redistributing the importance of 
the initial attribute across instances [48]. Train the system with an RF classifier after 
adding these shadow characteristics to the original dataset. The most relevant original 
characteristics of the model are any that are more significant than the most notable 
shadow feature. [49–51].

Recursive feature elimination (RFE)

A common method for choosing pertinent characteristics is the RFE technique. It is 
a strategy for simplifying a model by selecting its most salient attributes and rejecting 
those that are less relevant [52]. The selection process narrows down the list of 
attributes by gradually removing features that are not important for achieving optimal 
performance. The estimating model is trained using the original set of features, 
and the importance of each result is then determined by applying some arbitrary 
attribute or callable. Following that, the least important features are purged from 
the current collection of attributes. After that, the procedure is repeated recursively 
on the condensed collection until the desired number of features to be chosen is 
accomplished. The best-scoring feature set is chosen by combining CV with RFE to 
score several feature subsets and discern the ideal features [53, 54].

Least absolute shrinkage and selection operator (LASSO)

LASSO enables effective feature selection utilizing the linear relationship between 
input attributes and target output [55]. The coefficients may be quickly shrunk and 
removed to decrease variance, allowing for highly precise predictions. To achieve 
this goal of minimization, LASSO regression will selectively retain just the most 
informative attributes while dropping the rest [56, 57]. This operator’s capability 
to perform minimal selection and shrinking depends on changing the absolute 
amount of the coefficient among functions. It is possible to eliminate features from 
consideration if their coefficient value is zero, and attributes with negative coefficients 
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are also able to be omitted. Cost functions have a positive relationship with the 
coefficient of a feature. Therefore, the goal of LASSO regression is to reduce the 
absolute values of the coefficients while still optimizing the cost function. After the 
shrinking procedure is complete, the variables with the largest remaining nonzero 
coefficients are chosen as model features [58, 59]. The cost function of LASSO feature 
selection is as follows:

Here, R is the number of rows, m is the column number, yi is the training value, yj 
is the predicted value, ∝ is the hyperparameter, and ak is the coefficient of the k-th 
feature.

Balancing dataset

Improving ML accuracy greatly depends on balancing the imbalanced dataset [60]. An 
unbalanced dataset is one in which the number of observations for one of the target 
class labels is considerably smaller than for the other class labels [61]. Due to a lack of 
data, it will be challenging to obtain a meaningful and effective prediction model when a 
dataset is unbalanced or when a rare event happens [62, 63].

Synthetic minority oversampling technique

SMOTE is commonly utilized to address class-imbalance issues in the healthcare 
industry [64]. To ensure a more even distribution of data, synthetic instances were 
produced rather than copied. Using the KNN algorithm, which serves as the foundation 
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Fig. 2  Random Forest algorithm
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of these techniques, distance computation between instances is essential to the process 
of creating synthetic samples. To generate a new sample, SMOTE first picks a set of 
instances that are relatively close to one another in the feature space, then draws a line 
connecting those examples, and finally, picks a point on that line [65].

Algorithms used

Random forest (RF)

RF is characterized as an ensemble learner because it creates a significant number 
of classifiers and consolidates their outputs [66]. To increase the dataset’s ability to 
predict outcomes, it uses a number of DTs on different subsets of the provided dataset 
and calculates the mean. Higher accuracy is obtained, and the overfitting issue is 
averted when there are more trees in the forest [67, 68]. Since the techniques use an 
amalgamation of trees to make their predictions about the dataset’s class, some DTs 
might produce the correct result while others may not. But when all the trees are 
combined, they predict the right outcome [69–71]. The schematic diagram of the RF 
algorithm is shown in Fig. 2.

Decision tree (DT)

DT operates under the decision-making premise. The primary goal of employing DT in 
this study is to make predictions about the target class using a decision rule derived from 
historical data. It has a tree-like structure and is both precise and reliable. Any multistage 
method begins with the concept that a difficult decision may be broken down into 
a union of multiple smaller decisions, with the expectation that the resulting solution 
will be close to the desired solution [72]. In a DT, each possible branch is specified by a 
data-splitting sequence that starts at the root and ends with a Boolean result at the leaf 
node [73]. The training sample is represented by the initial node in the tree, which also 
contains internal nodes for dataset attributes, branching for decision-making processes, 

Fig. 3  Decision tree algorithm [75]
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and leaf nodes for results [74, 75]. The schematic diagram of the DT algorithm is shown 
in Fig. 3.

Support vector machine (SVM)

SVM is a technique that examines data and categorizes it into one of two groups. It 
generates a representation of the sorted data, with the margins between both being 
as wide as feasible. Data points falling on one side of the line will be assigned to one 
category, while those falling on the other side will be assigned to another. It may discover 
intricate connections between your data without requiring much manipulation [76, 
77]. The highest distance between the data points is what is referred to as a hyperplane, 
which is a decision boundary that contributes to classifying the data points. Support 
vectors are the number of observations or vectors nearest to a hyperplane that influences 
its location [78, 79]. The schematic diagram of the SVM is shown in Fig. 4.

K‑nearest neighbors (KNN)

The KNN method determines which of "K" possible classes the test data most closely 
resembles [80] based on a probability calculation of how well each class fits the training 
data. By determining the difference between both the test data and all of the training 
points, KNN attempts to predict the proper class for the test data [81]. K represents the 
number of immediate neighbors. There are no pre-defined statistical procedures for 
determining the most advantageous value of K, although selecting a small value of K 
results in unstable decision boundaries [82, 83]. So, while utilizing the KNN method, the 
distance and K value are significant factors to take into account. It is essential to consider 
the input data when deciding on a number for k; data with more outliers or noise, for 
example, may fare better with larger values. In order to eliminate ties in categorization, 
it is often advised to choose an odd integer for k [84–86]. A representation of the KNN 
algorithm is shown in Fig.  5. Here, we can see that class A and class B instances are 
denoted by two different color. There is also an instance in orange color which is actually 
the new example or data that have to be classified by the algorithm.

Fig. 4  SVM algorithm
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Adaptive boosting (AB)

AB may be used to enhance the effectiveness of any ML model. It works well with slow 
learners. The most effective algorithm for AB is DT for one level [87], making it the most 
widely employed. This approach initially trains the classification on the original dataset. 
The classifier is then trained on many instances, with each instance attempting to fix 
the flaw in the preceding instance. The classification algorithm is replicated, and each 
instance is trained on a unique data set. By giving weights to individual data points, 
several subsets of a dataset can be produced [88]. Then, a robust classifier is created by 
combining these weak classifiers with a cost function. In the final prediction, classifiers 
with greater accuracy are given a higher weight. The AB method can accept a parameter 
that specifies weak learners to which boosting should be performed [89, 90]. Our model’s 
parameters for training were as follows: base estimator with DT, n-estimators values is 
50, 0.5 learning rate, and 1 for the random state.

Gradient boosting (GB)

GB is a boosting method for ML that represents a DT for large and complicated datasets. 
It combines several poor prediction models to produce a single robust model [91]. There 
are three main components to the GB process. The loss function varies depending on 
the task at hand, the weak predictors utilized, and the additive model, which adds trees 
using a gradient descent method [92]. By merging the next model with the preceding 
ones, the approach minimizes error while predicting the best model possible. By 
removing overfitting, GB is a method that can improve the efficiency of the algorithm. 
The overfitting impact is mitigated by regularization procedures. It also prevents 
degeneration when proper fitting processes have been performed. There is a positive 

Fig. 5  KNN algorithm
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correlation between the number of GB rounds and the amount of error reduction 
achieved [93, 94]. Our model’s best learning rate was 0.1.

Computational complexity

Computational complexity is a discipline of computer science investigating algorithms 
based on the amount of computing power expected to run or execute them. Big O 
notation is the standard way to represent the time complexity of the algorithms [96]. KNN 
algorithms have no training complexity. Complexity is usually represented as an expression 
of n, where n is the size of the input, p is the number of attributes, ntrees represents the 
number of trees, and nsv is the support vectors. The training and prediction complexity of 
the algorithms used in this study is given in Table 2.

Evaluation metrics

Various measures, each with its unique significance, are used to evaluate each of the studies. 
When a prediction model generates an output that turns out to be true, we define that 
result as a true positive (TP). True Negative (TN) is the output of a prediction system that is 
false, and it is really false. False positive (FP) is the output of a predictive model that appears 
to be true but is in fact false. The result of a prediction model that is false but really correct 
is called a false negative (FN) [95].
Accuracy: It represents the proportion of input samples that resulted in accurate 

predictions.

Precision: The precision determines the portion of valid positive predictions. It is 
calculated as the proportion of accurate positive findings to those that the classifier 
anticipated to be positive.

Recall: It tends to compute the fraction of TP that was inaccurately classified. The ratio of 
TP to the combined total of TP and FN.

(2)accuracy =
Number of correct prediction

total number of prediction

(3)precision =
TP

TP+ FP

(4)recall =
TP

TP+ FN

Table 2  ML algorithms’ training and prediction complexity

Algorithms Training complexity Prediction 
complexity

Random Forest O(n2pntrees) O(pntrees)

Support Vector Machine O(n2p + n3) O(pnsv)

AdaBoost O(npntrees) O(pntrees)

Decision Tree O(n2p) O(p)

Gradient Boosting O(npntrees) O(pntrees)

K-Nearest Neighbors N/A O(np)
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F1-score: It involves assessing a binary classification model based on predictions for 
the positive class. Precision and Recall are employed in order to compute it. F1-score falls 
between 0 and 1. It indicates the classifier’s accuracy, or how many examples it successfully 
classifies, as well as its robustness.

Result and discussion
This section of the study consisted of the examination of classification models and 
their outputs from several distinct perspectives. In this study, we employed six ML 
algorithms: KNN, RF, DT, SVM, AB, and GB. These classification methods were 
applied to a number of parameters, which are depicted in Table 3 with a 5-fold CV. 
We first demonstrated the findings using all features, then the results using only the 
most important ones.

Experimental results with all features

A comparison of ML classifiers is conducted on the complete set of features in our 
dataset. In terms of assessment measures, certain classifiers performed well, while 
others did not. This research has been implemented into tree-based ensemble 
models, such as DT and RF. Additionally, the AB and GB tree-based boosting models 
are also utilized. The performance assessment of ML models with their whole set of 
characteristics is shown in Table 4. Table 4 shows that with the exception of SVM, the 

(5)F1− score = 2 ∗
precision ∗ recall

precision+ recall

Table 3  Different parameters of algorithms used in this study

Algorithm Parameters value

KNN n_neighbors = 5

RF Default

DT max_depth = 1, criterion = ’gini’, random_state = 1

SVM Default

AB base_estimator = dtclf, n_estimators = 50, learning_
rate = 0.5, algorithm = ’SAMME.R’, random_state = 1

GB learning_rate = 0.1

Table 4  Classification result of all ML models using all features

Algorithm Accuracy (%) Precision (%) Recall (%) F1-score (%)

KNN 94 63 80 67

RF 98 82 74 77

DT 97 77 71 74

SVM 76 53 73 50

AB 98 85 76 80

GB 98 80 80 80
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accuracy of all methods is well and above 90%. The best efficiency is achieved with 
the GB classifier, which exhibits a 98% accuracy rate, 80% precision, 80% recall, and 
80% F1-Score. Compared to the GB classifier, RF and AB algorithms achieve similar 
levels of accuracy; however, their other performance metrics values are slightly lower, 

Fig. 6  Comparisons graph of all features evaluation metrics

Fig. 7  Boruta features ranking
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with RF achieving a precision of 82%, recall of 74%, and f1-score value of 77%, and 
AB achieving a precision, recall, and f1-score of 85%, 76%, and 80%, respectively. 
Although AB and RF have better accuracy values than GB, GB’s recall value is 
substantially greater. SVM has the weakest result, with 76% accuracy, 53% precision, 
73% recall, and 50% f1-score (Fig. 6).

Experimental results with Boruta selected features

Four pertinent characteristics on thyroxin, T4U, FTI, and T3, are chosen from Fig. 7 
based on the Boruta feature selection algorithm’s ranking of them. Features with 
ranks greater than one are ignored by Boruta, and only those with a rank of one are 
considered. The effectiveness of these attributes is then examined using ML classifiers 
with the SMOTE approach. By eliminating the least significant features determined 
by Boruta, then the classifiers are trained and evaluated. After discarding unnecessary 

Table 5  The performance metrics of the algorithms after applying Boruta (Fig. 8)

Algorithm Accuracy (%) Precision (%) Recall (%) F1-score (%)

KNN 95 68 91 74

RF 99 96 90 93

DT 99 91 83 87

SVM 93 63 84 68

AB 98 84 78 80

GB 98 83 76 79

Fig. 8  Comparison of different evaluation metrics using Boruta feature selection
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data, the classifiers’ performance improved significantly. In Table  5, the accuracy 
outcomes after discarding the least significant features are shown. All algorithms’ 
accuracy has improved greatly, with the exception of AB and GB, whose accuracy 
has remained constant at 98%. Significant gains are shown for both RF and DT 
when employing four characteristics, with RF’s recall improving by 16%. Despite an 
improvement in KNN’s overall performance values, its accuracy and f1-score value 
still persist below 80%. With these four characteristics, T4U, FTI, T3, and thyroxin, 
the RF algorithm stood out with an accuracy of 99%, precision of 96%, recall of 90%, 
and the f1-score of 93%, while DT performance metrics are quite close to RF. Again 
SVM performed poorly.

Experimental results with RFE

Figure 9 shows that using the RFE approach, the attributes are narrowed down to age, 
sex, on thyroxine, pregnant, TSH, TT4, T4U, T3, and FTI features with rank one, and 
then, six different types of ML classifiers are applied to those selected features. Table 6 

Fig. 9  RFE features ranking

Table 6  The performance metrics of the algorithms after applying RFE

Algorithm Accuracy (%) Precision (%) Recall (%) F1-score (%)

KNN 97 76 96 83

RF 99 89 94 91

DT 99 88 92 90

SVM 93 62 91 68

AB 98 85 80 82

GB 98 83 85 84
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shows that with the exception of GB, the values of all performance measures for all 
algorithms enhanced, while the accuracy of the RF, DT, and AB classifiers persisted 
the same with the Boruta-selected four attributes. As can be seen, the RF classifier 
performed admirably with these nine characteristics, achieving accuracy rates of 99%, 
precision rates of 89%, recall rates of 94%, and f1-score rates of 91%. SVM, on the 
other hand, performs badly. The accuracy of the DT method is similar to that of the 

Fig. 10  Comparison of different evaluation metrics using RFE feature selection

Fig. 11  LASSO feature score
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RF, while recall and f1-score values are 2% and 1% lesser than RF, respectively. The 
results for AB performance measures are almost the same as they were for four and all 
features, but the values for GB are higher than they were for Boruta-selected features. 
The KNN method has good accuracy, recall, and f1-score values, which were 97%, 
96%, and 83%, respectively, apart from its precision value, which was 76% (Fig. 10).

Experimental results with LASSO selected features

Six features (age, sex, TSH, T3, TT4, and T4U) have the highest positive coefficient 
values, as seen in Fig.  11. Meanwhile, eight of the features have negative coefficient 
scores. With this approach, we are able to narrow down the characteristics to only 
six with the highest coefficient scores. Table  7 demonstrates the performance metrics 
value after applying LASSO method to the dataset. The accuracy values of all methods 
are exactly equivalent to those of the RFE-selected features. RF outperformed with 
the highest evaluation metrics values of 99% accuracy, 92% recall, 97% precision, and 

Table 7  The performance metrics of the algorithms after applying LASSO

Algorithm Accuracy (%) Precision (%) Recall (%) F1-score (%)

KNN 96 74 91 80

RF 99 97 92 95

DT 99 95 92 94

SVM 94 66 91 73

AB 98 83 77 79

GB 97 79 77 78

Fig. 12  Comparison of different evaluation metrics using LASSO feature selection
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95% f1-score. DT is the second most significant classifier, with a 99% success rate, 95% 
precision, 92% recall, and 94% f1-score. Despite SVM’s outstanding accuracy of 94%, it 
has the lowest precision rating when compared to other methods. Without precision 
value, KNN performance metrics values are acceptable. In comparison with the features 
chosen by RFE, AB and GB performance worsened (Fig. 12).

It can be seen that all of the algorithms we used have a decent performance, 
DT and RF performed best with 99% accuracy, proving to be the most accurate in 
predicting TD. Since boosting methods are known to transform weak learners into 
strong learners, AB and GB performed well with all features, but as soon as we choose 
important attributes and use classification techniques, their performance begins 
to deteriorate. KNN and SVM precision values are the lowest compared to other 
algorithms in all stages, with all features, even with selected features. As both RF and 
DT algorithms are tree-based, the values of their performance measures are almost 
equal throughout all phases. Finally, after analyzing the outcomes of all features and 
selecting key features using Boruta, RFE, and LASSO, we found that RF with LASSO 
selected features achieved the best performance, with an accuracy of 99%, precision 
of 97%, recall of 92%, and an f1-score of 95%. The performance of DT was second to 
that of RF. Age, sex, TSH, T3, TT4, and T4U are considered to be the most significant 
attributes by LASSO. By including these features, our proposed approach received the 

Table 8  Comparison of outcome between the existing system and our proposed system

AIRS: artificial immune recognition system, ANN: artificial neural networks, BPA: back propagation algorithm, CB: cat boost, 
CNN: convolutional neural network, EXT: extreme gradient boosting, LSTM: long short-term memory, LVQ: learning vector 
quantization, RBF: radial-based function,

Authors Algorithms Dataset Accuracy 
(%)

Precision 
(%)

Recall (%) F1 score 
(%)

outcome

D.C Yadov 
et al. [33]

bagging 
boosting, 
Stacking, 
and Voting

Chandan 
Diagnostic 
Center 
Sipah 
Jaunpur

94.210 94.412 96.620 N/A Predict TD

L. Aversano 
et al. [34]

DT, NB, KNN, 
RF, EXT, MLP, 
XGB, CB, AB, 
GB

AOU 
Federico II

84 85 84 84 TD treatment 
prediction

T. Alyas et al. 
[35]

DT, RF, KNN, 
ANN

UCI 94.8 91 N/A N/A Predict TD

I.M.D. 
Maysanjaya 
et al. [37]

RBF, LVQ, 
MLP, BPA, 
AIRS, 
Perceptron

UCI 96.74 96.8 96.7 96.8 Predict TD

W. Ahmad 
et al.[38]

LDA, KNN, 
ANFIS

UCI 98.5 99.7 94.7 N/A Predict TD

R. Chaganti 
et al.[39]

RF, LR, SVM, 
AD, and GB, 
LSTM, CNN

UCI 93 94 92 93 Predict TD

S. Shibu 
et al.[97]

KNN, RF, 
XGB, and CB

Kaggle 98.83 92.8 83.8 N/A Predict TD

Our study KNN, RF, DT, 
SVM, AB, 
and GB

UCI 99 97 92 95 Predict TD 
and identify 
major risk 
factors
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highest scores possible on all evaluation metrics. As a result, these are the major risk 
factors for a person with this disease.

Comparative table between the existing model and the proposed system

In Table 8, the comparison of the outcome between this proposed framework and the 
previous studies has been presented. Here, it can be seen that the dataset description 
and the performance metrics such as accuracy, precision, recall, and F1-score were 
represented. The outcome of the studies was also shown in the table.

Finally, we have observed that the novel aspect of this study is the combination of 
robust scaling method, oversampling by SMOTE, and the use of feature selection 
methods to determine the best attributes that increase classification accuracy for 
thyroid disease prediction and identify major risk factors for thyroid disease.

Conclusion and future scope
In this research, we proposed a robust and effective ML-based method for predicting 
TD. KNN, RF, DT, SVM, AB, and GB are examples of ML approaches used for our study. 
SMOTE is implemented to address class imbalance issues. Additionally, the feature 
selection procedures RFE, Boruta, and LASSO are employed. Thus, experimental 
findings show that tree-based algorithms with LASSO technique selected features are 
particularly successful in reaching the best accuracy. On all assessment metrics, RF 
combined with LASSO performed best, with results of 99% accuracy, 97% precision, 
92% recall, and 95% F1-score. Age, sex, TSH, T3, TT4, and T4U are considered to be the 
major risk factors for TD which are selected by LASSO.

This study has the possibility of improving the medical field and assisting as a helpful 
resource for doctors in identifying TD. Additionally, the doctor may benefit from 
having faster decision-making capabilities. However, the proposed model has certain 
shortcomings as well. The primary limitations of this study are the imbalanced dataset, 
the small sample size, and the substantial quantity of categorical variables compared to 
continuous features.

In the future, we intend to broaden the model’s applicability so that it may be used 
with various feature selection techniques and be robust to datasets with significant 
amounts of missing data. Another potential approach is the use of DL algorithms and 
hybrid models. Making a web and mobile application for the prediction of TD and a self-
monitoring system can add a certain value to the healthcare industry.
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