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Abstract 

A genetic algorithm is a biologically inspired stochastic approach to finding solutions 
to optimization problems. However, unlike its deterministic counterpart, it cannot 
guarantee a globally optimal solution since it may be trapped within a local optimum 
of the search space. Most researchers have focused on proposing new techniques 
for various parameters of genetic algorithms. That is a mutation, crossover, or selection 
algorithm. This research proposes a modification to the standard genetic algorithm, 
which may serve as a framework that can integrate any of these parameters for their 
contribution to the final solution of the genetic algorithm. The multiple restart dynamic 
population genetic algorithm (MRDPGA) proposed in this research was used in training 
the parameters of the adaptive neuro-fuzzy inference system (ANFIS) for scheduling 
road vehicular traffic flows. The results of training the ANFIS models based on the differ-
ent clustering methods showed that the MRDPGA-based ANFIS controller performed 
better with the mean square error (MSE) of 0.299 and root mean square error (RMSE) 
of 0.547 in the training phase; and MSE of 0.272 and RMSE of 0.521 in the testing phase. 
Using the controllers for traffic flow scheduling, the results showed that the MRDPGA-
trained controllers performed better in terms of average waiting time (AWT) mini-
mization and total arrived vehicles (TAV). The best-performing controller achieved 
50.40% AWT minimization and 21.44% TAV improvement. Analyzing the results using 
a one-tailed t-test for paired two-sample means showed that the MRDPGA algo-
rithm had a significant impact on the controllers. Particularly the FCM controller, 
where (p = 0.0038) and (p = 0.0003) for AWT and TAV at a 95% confidence level. Thus, 
MRDPGA algorithms are recommended for further assessment in other optimization 
problems to ascertain their performance in those problem domains.
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Introduction
The concept of optimization, which is concerned with the effectiveness and efficiency of 
solutions to problems, has become an interesting research topic. It involves determining 
a mix of problem parameters in appropriate proportions so that the solution is either 
maximized or minimized as required [1]. Optimization may be deterministic or stochas-
tic. A deterministic optimization approach often fails when the scale of the optimiza-
tion problem becomes large and complex, or the internal working mechanism of the 
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optimization is not known [2, 3]. Stochastic approaches can deal with these problems 
associated with deterministic approaches even though they also have the challenge of 
guaranteeing optimal global solutions [4, 5]. One of the most notable approaches to sto-
chastic optimization is the evolutionary algorithmic technique [6, 7].

Evolutionary algorithms are biologically inspired techniques that essentially perform 
a search for a global solution within the possible solution space of the optimization [8]. 
The genetic algorithm (GA) is one of the most notable evolutionary algorithms. It is 
capable of dealing with large and complex problems, which are either discrete or contin-
uous. It allows for the specification of adequate objective requirements and constraints 
as well as generates several possible optimal solutions. Therefore, GA has found several 
applications in diverse optimization problems. Examples include constraint function 
[6], two-dimensional rectangular packing problem [9], water distribution networks [10], 
classification problems [11], profit maximization [12], traffic flow control [13–17], and 
many other areas [18, 19].

Though GAs [20], in their several variants, have several advantages and have been 
applied in several optimization problems, they are often confronted with some funda-
mental challenges. Like any stochastic approach, GA has performance bottlenecks, 
which can be minimized with the application of parallel computing platforms. Also, GA 
may be trapped in local optima and unable to generate the global optima [4, 9]. There-
fore, this research proposes a modified genetic algorithm technique that minimizes the 
probability of GA being trapped in local optima even with the increase in problem size. 
That is, the probability of attaining global optima is improved.

To assess the effectiveness of the proposed GA technique, the modified GA was used 
to tune the adaptive neuro-fuzzy inference system (ANFIS) for adaptive control of road 
vehicular traffic flows. Even though a classical problem, road traffic control remains a 
major problem in modern cities of the world [21]. Traffic congestions problems have 
been approached differently in terms of factors affecting free flows, from queueing [22], 
driver and driving factors [23], traffic rules violations [24], to signal optimization [25, 
26] etc. However, desired results are yet attained in terms of minimization of vehicular 
waiting time (or delays), especially in modern cities. We have taken the city Kaduna of 
Nigeria to implement our model. Thus, it’s the case study used to assess the performance 
of the modified GA.

The major contributions of this work include:

• To develop a new genetic algorithm technique based on population modifications 
and multiple restarts.

• To apply the newly developed genetic algorithm technique for the optimization of 
ANFIS controller parameters.

• To estimate the vehicular hourly arrival rates at various roundabouts, and the 
enhancement of road traffic flows within a complex road network.
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The remaining part of this paper is organized as follows: the review of the most rel-
evant literature is presented in section “Literature review”. In section “Methodology”, 
the methodology describes the newly modified genetic algorithm, ANFIS controller, and 
simulation modeling. In section “Results and discussion”, the results and discussion are 
presented. Section “Conclusion” presented the conclusion and recommended the future 
direction of the paper.

Literature review
The standard genetic algorithm (SGA) is a five-step technique that performs population 
initialization, evaluation, selection, crossover, and mutation [27]. Due to the limitations 
of SGA, some researchers have attempted to address the challenges by proposing vary-
ing modifications or techniques that suit specific problem domains; and a few have con-
sidered generic modifications to the standard GA. This section presents a review of the 
relevant literature survey and presents a summary in Table 1.

Dao et  al. [4] proposed a new GA technique that involved adaptively restarting the 
GA. The proposed approach was tested on two benchmark functions, Hump with two 
dimensions and Rastrigin with fifteen dimensions. Results showed that the proposed 
method achieved better results at estimating the global optima of the functions com-
pared to the other approaches. However, the study only performs population modifica-
tion when restarting the genetic algorithm. Also, for every restart cycle, a new set of 
individuals from the population. These imply that the advantages of the best individuals 
in a given generation do not contribute to the next restart cycle. Also, close observation 
of the genetic algorithm reveals that though it may appear to have been trapped to local 
optima, at times, it can break out after several generations. Thus, jumping to restart the 
next cycle after there has not been an improvement in the best solution for a given num-
ber of generations may not necessarily be the best technique.

Potuzak [3] performed road traffic load balancing across multiple road intersections 
using distributed standard genetic algorithm. To perform the traffic load balancing, the 
average number of vehicles on each lane is obtained and used for traffic division into 
various sub-networks of the considered complex road network. Due to the computa-
tional bottlenecks of genetic algorithms, a parallel and distributed computing model was 
used. The results of simulating the proposed approach were reported to have shown sig-
nificant minimization of computational time requirement and interesting results of load 
balancing. However, the use of a standard genetic algorithm implies that the proposed 
approach suffers from the general challenge of local optima associated with standard 
genetic algorithms. The author of another study combined parallel and distributed com-
puting for the genetic algorithm with graph coarsening to solve the same problem of 
load balancing [28]. However, the challenges associated with the genetic algorithm and 
spectral and cut guarantees associated with graph coarsening are the study’s limitations.

Luis et al. [13, 14] modeled complex isolated intersection designs and enhance vehic-
ular throughput of the intersections. A model that calculated the intersection inflow’s 
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points of conflict was proposed, and standard genetic algorithm techniques were used to 
optimize vehicular arrival rates. The implementation of the cellular automata simulator 
and simulation of various traffic scenarios showed that the proposed approach achieved 
improvement within the range of 9.21% and 36.98%. However, the utilization of the 
standard genetic algorithm technique suggests that the proposed approach may suffer 
from similar challenges to standard genetic algorithms.

Basak [29] considered that the limitations of SGA were due to constant control 
operators resulting in the proposed adaptive mutation based on rank order. The result 
reported showed better performance but had the limitation of focusing on a single oper-
ator. This may not yield the best result as genetic algorithms require a proper mix of 
various parameters. Also, in an attempt to address the same problem of constant control 
operator parameters, Muzid [30] proposed the use of fuzzy logic to determine the prob-
abilities of mutation and crossover operators as well as population size based on fitness 
value. The results reported showed that the fuzzy logic-based approach to determining 
crossover and mutation probability showed better results compared to when the stand-
ard genetic algorithm was used. However, the challenge of the non-adaptability of fuzzy 
logic suggests a limitation of the study.

Villalba-morales and Ramírez-Echeverry [31] presented a weight optimization of a 
three-dimensional steel truss using a meta-heuristic search. The utilization of multi-
chromosomal GA with self-adapting variables ensured a good mix of parameters that 
resulted in the minimization of the weight of three-dimensional steel. The authors 
reported that 35% minimization was achieved. However, the study may be said to have 
binary-coded genetic algorithm challenges that include hamming cliffs, uninformed 
precision, and uneven schema importance are challenges associated with binary-coded 
genetic algorithms.

Mao et  al. [15] presented a single framework containing a genetic algorithm and 
machine learning for the optimization of traffic flow control. SGA was used for the 
determination of phase durations, and a machine learning regression technique was 
used to determine SGA operation parameters. The utilization of the new framework as 
a controller for traffic control problems with non-recurrent incidences was reported to 
have yielded promising results. However, the solution suffers from computational com-
plexity and requires that the machine learning regression model be adequately trained.

Al-Madi and Hnaif [32] considered and apply a human community-based genetic 
algorithm to solve traffic congestion problems. The special-cased genetic algorithm can 
introduce constraints in the crossover and mutation operations to improve the chances 
of maintaining diversity in the population. The results of using this algorithm showed 
that it achieved shorter congestion durations by 13% and minimized congestion by 83% 
in the considered road traffic congestion scenarios. The challenge associated with the 
human community-based genetic algorithm is the effectual and adequate modeling of 
constraints. When constraints are not properly and adequately considered for a given 
problem, it may not perform as expected.
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These studies focused on particular GA operations. Therefore, a generic technique 
that integrates these proposed techniques is proposed in this research. The new modi-
fied genetic algorithm is referred to multiple restart dynamic population algorithm.

Methodology
This section presents the modified genetic algorithm and the traffic control problem 
used to assess the performance of the genetic algorithm.

Proposed genetic algorithm

The multiple restart dynamic population genetic algorithm (MRDPGA) proposed in this 
research is presented in Algorithm  1. First, the general and local termination criteria 
are selected and used to control various iterations of the algorithm. The initial popula-
tion size, crossover, and mutation percentages are chosen. The population size continu-
ally changes during the local or general iterations of the algorithm. To determine when 
population size is modified during the local termination criteria, a threshold criterion is 
chosen and used to assume when the algorithm is trapped within local optima. At the 
restart, the population size modification is performed and a subset of the best individu-
als from the previous cycle of the MRDPGA are migrated to form part of the newly ini-
tialized population of the restart cycle. This is to increase the chance of having the best 
solution by having the best individuals mixed with an entirely new random population.

Applying the developed algorithm to the particular problem of training the Adaptive 
Neuro-Fuzzy Inference System, the objective function used for fitness evaluation was 
Mean Square Error (MSE) and Root Mean Square Error (RMSE). The general and local 
termination criteria were chosen to be some iterations to be performed. The general ter-
mination criteria were either a minimum MSE of 0.0002 or five iterations (Cg = 5); while 
the local termination criteria were chosen to be 1000 iterations (Cl = 1000). The initial 
population size, p was fifty (p = 50), and the threshold, Th of local iterations without 
improvement in the local solution was ten iterations (Th = 10).

Since this research focused on proposing a modified genetic algorithm technique, 
default Roulette-Wheel selection was used for population selection. Forty percent (40%) 
crossover rate and seventy percent (70%) mutation rate were used for the genetic opera-
tions. The trapped threshold value of ten (10) and initial population size of fifty (50) were 
used. To control population size growth and shrinkage, it was bounded above and below 
by fifty percent (50%). This was necessary to minimize performance (runtime) bottle-
necks of the MRDPGA.
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Algorithm 1: Multiple Restart Dynamic Population Genetic Algorithm
Input:

Popula�on size, 
Global/General Termina�on Criteria, 
Local/Sub Termina�on Criteria, 

Output:
Global Best Solu�on, 

Begin
Ini�alise counters , , 
While ≠

if = ∅

Ini�alize random Popula�on, of size, 
else

Ini�alize random Popula�on, of size 
2

Set = ( , )

endif
Set = ( )

Set = [1]

While ≠

Set = ( )

Set = ( )

Set = ( , , )

Set = ( )

if [1] ≥

Set = + 1

if ≥ ℎ

Modify popula�on size, 
Set = { [ ] ∶ = 1,2,3, … , }

endif
else

Set = [1]

Set = 0

endif
Update

endwhile
if <

Set =

Endif
Set = { [ ] ∶ = 1,2,3, … ,

2
}

Modify popula�on size, 
Update

endwhile
end

ANFIS controller modeling

To assess the performance of MRDPGA, ANFIS controllers based on the clustering 
methods were modeled. The grip partition clustering (GPC), subtractive clustering 
(SC), and fuzzy C-means (FCM) clustering controllers modeled were trained using the 
default training algorithm, gradient descent, and least squares estimations. They were 
also trained using a standard genetic algorithm and multiple restart dynamic popula-
tion genetic algorithm. The objective function for the genetic algorithm was the mean 
square error (MSE) and root means square error (RMSE). These parameters were used 
to determine performance variance between the ANFIS default training algorithm, SGA, 
and MRDPGA. The ANFIS controllers were modeled to have two inputs (waiting time 
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and queue length) and one output (phase duration). The GPC controller was modeled to 
have a Gaussian membership function and five fuzzy sets for each of the inputs. The SC 
controller was modeled to have a radius of ten (10), and the FCM was modeled to have 
ten (10) clusters.

Simulation modeling

Simulation of traffic scenarios was used to assess the performance of the modeled ANFIS 
controllers trained using the default algorithm, SGA and MRDPGA. Particularly, micro-
scopic simulation was implemented using the simulation of urban mobility (SUMO) 
open-source platform. To control SUMO objects such as traffic lights and access simula-
tion parameters such as vehicular waiting time and flows queue lengths, a traffic control 
interface for matrix laboratory (TraCI4Matlab) was used.

The considered road traffic flow network in this research was the road section from 
Kalapanzi Army barrack and St. Gerrard’s Catholic Hospital in Kakuri to General Has-
san Katsina House in Kaduna, Nigeria. To capture a near-reality road network design, 
OpenStreetMap was used to retrieve the considered road network with little modifi-
cation to include the new conversion of the Leventis roundabout to an underpass. The 
considered road network consists of eight roundabouts and one underpass with lanes 
ranging from one to three.

The traffic flow rates and vehicles per hour (VPH) were based on vehicular sam-
ple count performed at the two strategic roundabouts connecting the northern and 
southern parts of the metropolis. The peak period had an hourly average arrival rate of 

Fig. 1 Performed research activities framework

Table 2 Grid partition model training performances

Controller Training Testing

MSE RMSE MSE RMSE

DefaultGridPartFIS 0.31706 0.56308 0.3169 0.56294

SGAGridPartFIS 0.32004 0.56572 0.30995 0.55673

MRDPGAGridPartFIS 0.30201 0.54955 0.32684 0.5717
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350VPH, and the off-peak period had 103VPH. These values were scaled to have differ-
ent traffic scenarios considered to be representative of various traffic flow possibilities. 
The vehicles were into categories of light, moderate or heavy vehicles based on the Fed-
eral Highway Administration classification. Their speed specification in kilometers per 
hour (KMPH) was based on these categories, and as provided by Federal Road, Safety 
Corps recommended speeds for vehicles within cities. Light and moderate vehicles had 
a speed of 50KMPH, while heavy vehicles had a speed of 45KMPH. The traffic controller 
programmer was implemented such that a fraction of the assigned green phase duration 
for each traffic flow is used for the clearing of the roundabouts. This technique enhances 
the flows and minimizes the probability of deadlocks at the roundabouts. For this 
research, 40% of the green phase duration was used for the clearing of the roundabouts. 
That is, the green wave is assigned only to the circulating flows of the roundabouts.

In summarizing the research method, a framework of activities performed is pre-
sented in Fig. 1. That is, with traffic training data, the ANFIS models are trained using 
either a default algorithm (DA), a standard genetic algorithm (SGA), or a multiple 
restart dynamic population genetic algorithm. The ANFIS controllers resulting from the 
training of ANFIS models are then used for traffic scheduling. The considered traffic sce-
narios were based on the extrapolation of traffic count data and estimation performed at 
selected roundabouts of the considered road network.

Results and discussion
This section presents the results of training the ANFIS controllers using the default 
training algorithm, SGA and MRDPGA. The results of the simulation of traffic flow sce-
narios using the different controllers are also presented.

Controller training performance

In Table  2, the GPC controller training performance results of considered training 
algorithms are presented. SGA-based GPC-trained (SGAGridPartFIS) had the lowest 

Table 3 Subtractive clustering model training performances

Controller Training Testing

MSE RMSE MSE RMSE

DefaultSubCluFIS 2.5284 1.5901 2.4621 1.5691

SGASubCluFIS 2.2908 1.5135 2.2936 1.5145

MRDPGASubCluFIS 0.7571 0.87011 0.78551 0.88629

Table 4 Fuzzy C-means clustering model training performances

Controller Training Testing

MSE RMSE MSE RMSE

DefaultFCMFIS 0.62241 0.78893 0.63949 0.79968

SGAFCMFIS 0.81655 0.90363 0.78317 0.88497

MRDPGAFCMFIS 0.29886 0.54668 0.27152 0.52108
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performance results in terms of MSE and RMSE in the training phase of the controller. 
The default-based GPC-trained (DefaultGridPartFIS) performed better than the SGA-
based GPC-trained but below the MRDPGA-based GPC-trained (MRDPGAGridPart-
FIS). That is, the GPC controller outperformed the other two controllers to demonstrate 
its ability at finding the optimal solution to an optimization problem.

In Table 3, the SC controllers’ training performance results are presented. The default-
based SC-trained controller (DefaultSubCluFIS) underperformed compared to the other 
two controllers both in the training and testing phases. The MRDPGA-based SC-trained 
controller (MRDPGASubCluFIS) outperformed the other two controllers having the 
lowest values of MSE and RMSE both in the training and testing phases. This also shows 
that the MRDPGA training algorithm was better at searching for the optimal solution 
for the SC models.

In Table 4, the performance results of using the three considered algorithms for train-
ing the FCM model parameters are presented. The results showed that the SGA-based 
FCM-trained controller (SGASubCluFIS) underperformed compared to the other 
trained controllers. However, the MRDPGA-based FCM-trained controller (MRDP-
GASubCluFIS) performed best to outperform both the default-based FCM-trained and 
the SGA-based FCM-trained controllers. Having lower values of MSE and RMSE both 
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Training Performance of Models
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Fig. 2 Summary of controller training performance
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Fig. 3 Summary of controller testing performance
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in the training and testing phases demonstrates the ability of the MRDPGA algorithm to 
optimally tune the parameters of the FCM models.

The MRDPGA-based controllers showed that irrespective of clustering methods used, 
the algorithm generally performed better at finding the optimal solution to the optimi-
zation of ANFIS-based controllers. Comparing the results of the MRDPGA-based con-
trollers shows that the MRDPGA algorithm performed best at tuning the parameters 
of FCM model, followed by the GPC model and then the SC model (Figs. 2 and 3). This 
may be a result of the ANFIS parameters used.

Simulation results analysis

The road traffic simulation results were assessed based on the vehicular average waiting 
for time (AWT) and the number of vehicles that have arrived at their destination [19]—
total arrived vehicles (TAV). Five different traffic scenarios are considered in terms of 
hourly arrival rates.

In Table  5, the road traffic simulation results of the GPC controllers are presented. 
The results showed that there was no performance variance between the SGA-based 
and GPC-trained controllers. However, comparing the results of the MRDPGA-based 
GPC-trained controller to that of the default-based GPC-trained and SGA-based GPC-
trained controllers, the results showed that the MRDPGA-based GPC-trained controller 
performed better in terms of both the AWT and TAV by approximately 33% and 21%, 
respectively.

In addition, analyzing the impact of MRDPGA algorithm on the performance of the 
implemented grid partitioned clustered controllers, p = 0.0089 was obtained from the 
t-Test for paired two sample means in the case of AWT results; and p = 0.0053 in the 
case of TAV results of GPC-trained and MRDPGA-trained controllers as well as for 
SGA-trained and MRDPGA-trained controllers. These p values show that at a 95% con-
fidence level, there is a statistically significant difference between sampled means of the 
results obtained by the different controllers. This demonstrates the ability of MRDPGA 
at obtaining better global solutions to the problem at hand.

In Table 6, the road traffic simulation results using SC controllers are presented. The 
results showed that the SGA-based GPC-trained controller slightly underperformed 
compared to the default-based GPC-trained controller both in terms of the AWT and 
TAV by approximately 3% and 1%, respectively. However, the MRDPGA-based GPC-
trained controller outperformed the default-based GPC-trained controller by approxi-
mately 37% in AWT and 20% in TAV. It also outperformed the SGA-based GPC-trained 
controller by approximately 38% and 21% in AWT and TAV, respectively.

In addition, analyzing the impact of MRDPGA on the performance of the controllers, 
p = 0.0263 was obtained AWT and p = 0.0041 for TAV from t-Test analysis performed 
between Default-trained and MRDGPA-trained controllers. In the case of SGA-trained 
and MRDPGA-trained controllers, p = 0.0155 for AWT results and p = 0.0050 for TAV 
results. These also showed that at a 95% confidence level, there is a significant differ-
ence between the sampled means of the results obtained using the controllers. A closer 
look at the p values in these cases showed that the MRDPGA-trained controller had 
only slight statistical significance variance in the case of AWT results obtained using 
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SGA-trained and MRDPGA-trained controllers. However, it showed higher significance 
in the case of TAV for the controllers.

In Table 7, the road traffic simulation results of using FCM models as controllers are 
presented. Comparing the results of the SGA-based FCM-trained controller to that of 
the default-based FCM-trained controller, the results showed that the default-base 
FCM-trained controller significantly outperformed the SGA-based FCM-trained con-
troller both in terms of the AWT and TAV by approximately 35% and 2%, respectively. 
Comparing the results of the MRDPGA-based FCM-trained controller to that of the 
default-based FCM-trained controller, the results showed that the MRDPGA-based 
FCM-trained controller outperformed the default-based FCM-trained controller by 
approximately 33% and 22% in terms of the AWT and TAV, respectively. Also, the results 
of the MRDPGA-based FCM-trained controller outperformed that of the SGA-based 
FCM-trained controller by approximately 50% in terms of the AWT and 21% in terms of 
the TAV.

In addition, analyzing the impact of the MRDPGA algorithm on the training of FCM 
controllers, p = 0.0053 and p = 0.00396 were, respectively, obtained for AWT and TAV 
in t-Test analysis between Default-trained and MRDPGA-trained controllers. In the 
case of SGA-trained and MRDPGA-trained controllers, p = 0.0038 and p = 0.0003 were 
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Fig. 4 Graphical representation of controllers’ average waiting time
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Fig. 5 Graphical representation of controllers’ total arrive vehicles
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obtained for AWT and TAV, respectively. These show that there are significant differ-
ences in the paired two sample means of the results obtained using the Default, SGA, 
and MRDPGA-trained controllers, which again demonstrate the impact of the MRD-
PGA algorithm in the training of the FCM-based controller.

These results showed the MRDPGA-based controller always outperformed the other 
controllers in their respects. This demonstrates the importance of effectively tun-
ing ANFIS parameters, which the MRDPGA algorithm has distinguished itself in this 
research. That is, it considered the search space and effectively searched for the optimal 
results.

A comparison of the MRDPGA-based controllers based on the different ANFIS clus-
tering methods showed that the GPC controller outperformed the SC controller by 
approximately 4% in terms of AWT but underperformed by approximately less than 1% 
in terms of TAV. FCM controller outperformed the GPC controller by approximately 
11% in terms of AWT and by approximately 1% in terms of TAV. Also, the FCM con-
troller outperformed the SC controller by approximately 12% and 1% in terms of AWT 
and TAV, respectively. That is, the FCM controller trained using the MRDPGA algo-
rithm essentially demonstrated superiority in this research. This follows from the abili-
ties of FCM to flexibly and adaptively assign data points to different clusters of varying 
shapes and sizes based on the degrees of the membership of each data point. In addition, 
FCM can determine the number of clusters as well as deal with irregularities in datasets, 
which may be a result of uncertainties. When trained with MRDPGA, it acquired the 
added advantage of searching through a possibly large solution space in such a manner 
as to enhance the chance of obtaining a global solution in terms of cluster shapes, sizes, 
and numbers.

The summary of the results obtained is presented in Figs. 4 and 5. In Fig. 4, the graphs 
of the average waiting times recorded when using the different controllers are presented. 
It shows that the MRDPGA-trained controllers for all ANFIS models recorded the low-
est AWT, with the FCM model being the lowest of all controllers. This implies that the 
MRDPGA-trained controllers performed better in this respect. Also, in Fig. 5, the aver-
age total number of vehicles that have arrived at their destinations, called total arrived 
vehicles (TAV) for all controllers, are presented. The results showed that the MRDPGA-
trained controllers recorded the highest TAV numbers. This implies that the MRDPGA-
trained controllers performed better.

It should be noted that the computational complexity of MRDPGA may be higher 
compared to SGA, especially in cases where the population size of SGA is equal to the 
initial population size of MRDPGA. This is a result of the fact that MRDPGA runs mul-
tiple iterations based on the global and local termination criteria. However, when the 
number of iterations and population size differ, it may not be the case.

Conclusion
Optimization problems require techniques or algorithms that effectively mix problem 
parameters in other to guarantee optimal solutions to the problem. This requires search-
ing through the solution space such that the chance of the algorithm being trapped 
within a local optimum and failing to obtain the global optima is reduced. This research 
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modified a standard genetic algorithm, which has the above-mentioned challenge. The 
modified algorithm demonstrated its capability in training ANFIS models based on dif-
ferent clustering methods. It recorded the lowest MSE of 0.299 and RMSE of 0.547 in 
the training phase; and MSE of 0.272 and RMSE of 0.521 in the testing phase. Using 
the controllers for traffic flow scheduling, the results showed that the MRDPGA-trained 
controllers performed better in terms of average waiting time (AWT) minimization and 
total arrived vehicles (TAV). The best-performing controller achieved 50.40% AWT 
minimization and 21.44% TAV improvement over other controllers.

The modified algorithm is a framework that can integrate other parameter-based opti-
mization of genetic algorithms. That is, the different adaptive population techniques 
may be used at the local and global population modification stages of MRDPGA. Also, 
different selection algorithms may be used instead of the used roulette-wheel selection 
algorithm. To further assess this modified genetic algorithm, it may be assessed with 
other known optimization problems used as benchmarks.
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