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Abstract 

An improved whale optimization algorithm (IWOA) is developed for the model order 
reduction (MOR) of large-scale systems (LSS) in this paper. An equivalent reduced 
order model (ROM) for the higher-order system (HOS) is derived by considering inte-
gral square error (ISE) as the objective function using IWOA. Many practical systems 
of single-input and single-output (SISO) and multi-input and multi-output (MIMO) 
systems are considered to examine the worth of the proposed technique. The power-
fulness and robustness of the proposed design technique are tested on various typical 
examples. Several simulation results have been reported to demonstrate the efficacy 
of IWOA. To prove the potentiality of the suggested technique, the results have been 
compared with the familiar classical MOR techniques as well as other heuristic algo-
rithms available in the literature.

Keywords:  Improved whale optimization algorithm, Large-scale systems, Model order 
reduction, Integral square error

Introduction
Usually, LSS when modeled will turn out into HOS because of large parameters involve-
ment. Analysis of such HOS is tedious, complex, time-consuming, costlier, and requires 
more storage capacity. Over the last few decades, MOR techniques are developed to 
address the above issues. Hence, MOR techniques have been paid much attention in the 
field of control engineering to simplify large-scale practical systems like nuclear reac-
tors, jet air engines, boilers, and generators connected to infinite bus systems. The big-
gest advantage of the MOR technique is the developed ROM provides the same behavior 
as its original HOS. Many MOR techniques have been proposed by several researchers 
in both time and frequency domains. The benchmark method that was developed by 
using Routh’s table is presented in [1]. This method was realized as the prominent MOR 
technique in the field of control systems and it states that the ROM derived from the 
HOS is always stable when the original HOS is stable, and ROM can also be derived by 
using impulse energy approximation. Later, another method that uses both Routh’s table 
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and Pade approximation is proposed in [2]. This model gives exact approximations with-
out altering the characteristics of the original HOS of both SISO and MIMO systems. 
After that, a paper that describes a detailed narration of the MOR is outlined in [3]. The 
authors in [4] proposed a method in which the reduced transfer function of the HOS 
is determined from the Routh stability array by using an eighth-order model. Later, an 
improved version of the Pade approximation is depicted in [5, 6]. A paper that focuses on 
the derivations of transfer functions from the HOS is presented in [7]. A hybrid method 
of using Routh’s stability equation method and Pade approximation is proposed in [8] 
which is simple and gives effective ROM for nonlinear systems also. In addition to the 
above, several classical MOR techniques [9–22] are reported in the literature. The appli-
cation of MOR techniques to various practical systems is explored in [23–27]. However, 
involvement of more mathematical calculations, complexity and time consummation are 
the major drawbacks observed in classical techniques. In recent years, bio-inspired algo-
rithms have emerged as powerful tools for solving complex problems. They were proven 
to address the issues listed above. Many heuristic algorithms are developed for the 
MOR techniques. Particle Swarm Optimization (PSO) [28, 29], Differential Evolution 
(DE) [30], Cuckoo Search Algorithm (CSA) [31,32, 33], Fire-Fly Algorithm (FFA) [33], 
Bat Algorithm (BA) [34], Big-Bang Crunch Algorithm (BBCA) [35], Enhanced DE[36, 
37], PSO-DV[38] are some of the algorithms that are developed for the MOR. Though 
several methods are available, yet, an effective MOR technique for complex large-scale 
practical systems is still indispensable for getting the robust operation. Moreover, the 
above methods suffer from various drawbacks like premature convergence, not having 
good balance between exploitation & exploration stages, involvement of more design 
parameters, and steps that makes the optimization process complex and fails in evolv-
ing global best solutions. This motivates the authors to propose an effective method to 
address the above issues. Recently, IWOA [39] is proven its potential in solving complex 
engineering problems and addressed majority of the issues mentioned above. Hence, 
IWOA is considered to derive the ROM of some complex LSSs. The remainder of the 
paper is as follows. The second section depicts the statement of the problem, while the 
third section illustrates an overview of WOA. The fourth section explains the proposed 
IWOA for MOR and the performance analysis of IWOA on the test functions of CEC14 
and CEC17. The fifth section presents the simulation results of three examples and the 
conclusion part is given in section six.

Problem statement
In this work, the authors considered some of the practical LSSs as examples to test the 
worth of the proposed IWOA method. The power system formulated by a modified sin-
gle generator connected to an infinite bus system popularly known as Single Machine 
Infinite Bus System (MSMIB) and an air core of the transformer has been considered 
as the practical test examples to test the proposed IWOA technique. The MSMIB sys-
tem is realized as a MIMO system, and the air core transformer linear section is realized 
as a SISO system. The IWOA is used to determine the coefficients of ROM of original 
higher-order MIMO and numerator and denominator coefficients of original higher-
order SISO systems. Both the SISO and MIMO systems are represented as given below.

Consider a nth - order SISO can be represented by
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where the order of numerator and denominator polynomial are i = 0,1,2,3,….n-1 & 
j = 0,1,2,3,….n, respectively. The equivalent r th (r < n) ROM order to be derived, is repre-
sented by

where the order of numerator and denominator polynomial are i = 0,1,2,3,….r-1 & 
j = 0,1,2,3,….r, respectively. And any MIMO plant, G having the order of n < ∞ , can be 
described by set of equations

where A is m×m , B is m× 1 , C is m× r , and D is m × m matrices, respectively.
The equivalent ROM of the original MSMIB system is assumed as Gr, having the order 

of nr < n. The ROM to be determined has the same features as G, represented by the set 
of equations

where Ar is r × r matrix, Br is r × 1 matrix, Cr is 1× r , Dr is r × r matrices of the ROM.

Overview of WOA
The WOA [40] was developed in the year 2016 after seeing the attacking behavior of the 
Humpback whales. These whales attack the prey in a nine-shaped path known as a bub-
ble-net feeding mechanism. The whale generates a lot of bubbles along the nine-shaped 
path to form a net-type configuration to reach the target. The WOA is simple to under-
stand and easy for the development of coding. The number of design parameters is less 
when compared to other algorithms. The rate of convergence is fast and takes minimum 
simulation time for getting optimum solutions (Fig. 1).

Steps involved in the WOA algorithm

Initially, initial parameters like population size, maximum iterations, minimum and 
maximum values of control variables, and other parameters of WOA are selected. Here, 
the ROM coefficients are considered as control variables. The initial solutions are gener-
ated randomly on a given objective function. The following steps depict various steps 
involved in determining the optimum solutions using WOA.

(1)Gn(s) =
Y (s)

U(s)
=
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(6)Yr = CrXr + DrU
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Step 1 A Shrinking encircle mechanism for the position update of hunting agent  As the 
initial solutions are generated randomly, the current solutions are considered as best 
solutions and the position of the whale is updated by using this mechanism. To attack 
the target, the whale follows a path which is defined by the equation below.

All the hunting agents change their position by using the above equations. Here, 
→

S  
depicts the distance between the whale and the target, R and A are the random num-
bers that are varied randomly during the optimization process, t be the current iteration, 
P∗ corresponding to the optimum solution attained until now, 

→

P  stands for the position 
vector, represents the absolute value. Here,A R are characterized as

Here,A is the arbitrary number that alters between 2 and 0 and r is an arbitrary num-
ber that varies between (0,1). In every iteration process, the values of a,A,R are updated 
for each hunting agent. The present hunting agents update their location by Eq. 7 if the 
value of A is less than 1, and they follow the below equation otherwise.

where 
−→
P rands is the random position vector which is selected in during the process from 

the present populations?

(7)
→

S = R = R
−→
P ∗ (t)−

−−→
P(t)

(8)−→
P (t+1) =

−→
P

∗(t)− A
−→
S

(9)
A = 2a r − a

(10)
R = 2r

(11)S = R
−→
P rand−

−→
P

(12)−→
P (t + 1) =

−→
P ∗(t)− A

−→
S

Fig. 1  The hunting strategy of Humpback Whales
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Step 2  A spiral mechanism for the position update of the hunting agent.

Hunting agents or ROM coefficients follow both shrinking cycle and spiral-shaped path 
during the search for their prey. To simulate the spiral-shaped track between the whale 
and target, a spiral equation is formulated. All the hunting agents update their position 
based on the formulated equation given below.

where

Here ’l’ is a stochastic limit that diverges between 0 and 1. Both spiral itinerary and spiral 
itinerary are merged by giving a 50% probability to both of them to update the positions. 
Finally, all the hunting agents follow the path described by the equation below.

where δ is an arbitrary value that alters between 0 to 1.

IWOA for the MOR
The exploration and the exploitation stages are two important phases of any heuristic 
search algorithm. Maintenance of a good balance between these stages finds global solu-
tions for complex engineering problems. Every particle finds a local best solution in the 
exploitation stage and a global best solution in the exploration stage. S. Mirjalili who devel-
oped the WOA has mentioned in his recent paper [31] that WOA fails to find the global 
optimum solutions as the solution to be updated in WOA for the next iteration depends 
upon the previous solution or current best solution. If the obtained current solution is not 
found to be the best solution, then the remaining solutions follow the current solution, and 
then there may be a chance of failure of getting global solutions. It is also mentioned that 
by improving the exploitation rate of the WOA, the strength of WOA could be improved. 
The convergence rate of WOA depends upon the best solutions attained so far. Hence, if 
the current best solutions obtained so far are not accurate then the algorithm may fail to 
find the global best solutions. This is the major disadvantage of the WOA. To address these 
issues, IWOA has been developed in this paper. In the IWOA, a weighting factor is added 
to the updating agent to accelerate the exploitation rate of the algorithm and thence to get 
the improvement in searching capability. The value of this factor is selected in such a way 
that it varies between 0.9 and 0.4 during the optimization process. The key function of 
the factor is to control the current best solutions so that they do not fall in local optima. It 
provides a good equilibrium between the stages of both exploration and exploitation. And 
finally, the algorithm can find the global optimum solutions. It was the change done to the 
WOA to attain IWOA. All the hunting agents update their positions using the following 
equations.

(13)−→
P (t + 1) =

−→
S ebl cos(2π l)+

−→
P ∗(t)− A

−→
S

(14)−→
S =

−→
P

∗(t)−
−→
P (t)

(15)�P(t + 1) =

{

�P∗(t)− A�S if δ < 0.5
�Sebl cos(2π l)+ �P∗(t)− A�S f δ ≥< 0.5
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Here, w is the weighing factor which is described as,

where βmin, βmax and β are the lower, upper, and mean values of the weighing fac-
tor. Here, α represents a constant number and the value is selected as 0.4 and rand is a 
numeral value that alters between 0–1 arbitrarily. During the optimization process, the 
hunting agents get minimum and maximum values of weights to fiddle with the weight-
ing factor for the global optimization process. The spiral mechanism for the IWOA is 
modeled as 

In the IWOA, the whales update their positions by following both shrinking encircle 
and spiral mechanisms to reach the target mechanism. Hence, to account for this, a 50% 
probability has been assigned to both the mechanisms. The whales update their posi-
tions by using the below equation if A is < 1; otherwise, they update their positions by 
using Eq. 11.

Performance analysis of IWOA

Before deriving the ROMs, the worth of IWOA is tested with the standard benchmark 
test functions of CE14 and CEC17. These test functions are highly nonlinear and getting 
a minimum fitness value is a challenging task. A total of thirty-three test functions are 
considered and tested with IWOA. The IWOA is applied to all test functions to inves-
tigate its potential of the IWOA. The test results in terms of minimum fitness value for 
all the test functions are presented in Tables  1 and 2, respectively. The test results of 
CEC 14 and CEC17functions are displayed in Tables 1 and 2, respectively. The results 
are compared with PSO, DE, and WOA-based results to show the superiority of the 
proposed IWOA. It is observed from the results that the fitness values obtained for the 
functions f1(x), f2(x), f3(x,), f4(x,), f7(x), f8(x) of CEC14 and test functions f1(x), f3(x), f4(x), 
f5(x), f6(x), f7(x), f9(x), f10(x), F11(x) of CEC17 are minimum in case of IWOA when com-
pared to other algorithms. Hence, it is realized that the IWOA is succeeded in finding 
the optimum solutions for the majority of the test functions when compared to other 
algorithms. Therefore, IWOA is utilized to design the ROM coefficients for the HOSs. 

(16)−→
S = Rw

−→
P

∗(t)−
−→
P (t)

(17)−→
P (t + 1) =

−→
wP∗(t)− A

−→
S

(18)
{

w = β + α × rand (0, 1)

β = βmin + (βmax − βmin)× rand (0, 1)

(19)�P(t + 1) = �Sebl cos(2π l)+ w�P∗(t)− A �S

(20)Where
−→
S = w

−→
P ∗(t)−

−→
P (t)

(21)
−→
P (t+1) =

{

{w
−→
P

∗(t)− A
−→
S if δ < 0.5

−→
S e

bl cos(2π l)+ w
−→
P

∗(t)− A
−→
S if δ ≥< 0.5
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The flowchart for the IWOA to get ROMs is depicted in Fig. 2. The convergence plots of 
some of the test functions are shown in Figs. 3 and 4. From the plots, it is proven that the 
IWOA finds the optimum solutions when compared to other techniques.

Implementation of IWOA for the MOR

Here, IWOA is used to determine the elements of Ar , Br , Cr , and Dr of the MHP model. 
The following are various steps involved to get ROM using Improved WOA.

Step1: Initialization  The algorithm starts with the initialization process. Here, ele-
ments of the original HOSs are chosen as design parameters and are optimized to get 
desired ROM that preserves most of the dynamic behavior of the original HOS. Here, 
a fourth-order ROM is to be derived from their HOS using IWOA. The initial values of 
control variables are arbitrarily generated by using the expression given below.

(22)Zi+1 = Zmin
i + rand.(Zmin

i − Zmax
i )

Table 1  Test results of CEC14 test functions

Bold represent the best fitness Values

S.No Name of the 
function

Order 
of the 
function

IWOA WOA DE PSO
Fitness value

1 High Condi-
tioned Elliptic 
function

f1(x) 1.4715e−90 3.5101 e −80 3.5632 e−04 1.6684 e−80

2 Bent Cigar 
Function

f2(x) 1.1345 e−104 4.0897 e−88 3.3893 e−04 1.9313 e−15

3 Discuss func-
tion

f3(x) 1.4795 e−93 1.7573 e−73 8.6146 e−13 3.1554 e−22

4 Rosenbrocks 
Function

f4(x) 1.0812 e−06 1.1866 e−06 3.0034 e−03 1.6720 e−02

5 Ackley’s Func-
tion

f5(x) 4.4409 e−14 4.4409 e−14 4.4409 e−14 4.4409 e−14

6 Weierstrass 
Function

f6(x) 9.441375732422 
e−03

9.441375732713
e−03

9.441375732812
e−03

9.441375733129
e−03

7 Griewanks 
Function

f7(x) 2.2204 e−16 4.6928 e−08 7.0573 e−07 4.2514 e−06

8 Rastrigin’s 
Function

f8(x) 1.4970 e−86 1.3548 e−80 5.6960 e−05 0.001.2 e−03

9 Modified 
Schwefel’s 
Function

f9(x) 0.0013 0.0073 0.0038 0.0083

10 Katsuura Func-
tion

f10(x) 1.4746 e−11 1.7937 e−10 4.4305 e−10 1.7377 e−10

11 HappyCat 
Function

f11(x) 3.5338 e−05 1.7126 e−04 0.9555 1.6875 e−08

12 HGBat Func-
tion

f12(x) 1.4610 e−06 2.7428 e−06 2.5256 e−03 8.2076 e−04

13 Expanded 
Griewanks plus 
Rosenbrocks 
Function

f13(x) 25.312 63.6412 4.5131 7.9816

14 Expanded 
Schaffer’s 
Function

f14(x) 1.7 e−03 0.009.7 e−03 0.006.5 e−03 5.32 e−02
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where Z defines the control variable which is to be updated in every iteration, rand is an 
arbitrary number that varies between 0 to 1. Here Zmin

i  and Zmax
i  are the minimum and 

maximum values of the control variables, respectively. The total number of iterations is 
taken as 100; population size is selected as 50.

Table 2  Test results of CEC17 test functions

Bold represent the best fitness Values

S.No Name 
of the 
function

Order 
of the 
function

IWOA WOA DE PSO

Fitness value

1 Bent Cigar 
Function

f1(x) 1.1345 e−104 4.0897 e−88 3.3893 e−04 1.9313 e−15

2 Sum of 
Differential 
Power Func-
tion

f2(x) 99.515675936657374 99.515675945535875 99.5157 99.5157

3 Zakharov 
Function

f3(x) 3.2883e−111 9.5876e−80 2.5150e−08 4.1649e−09

4 Rosen-
brocks 
Function

f4(x) 1.0812e−06 1.1866e−06 3.0034e−03 1.6720 e−02

5 Rastrigin’s 
Function

f5(x) 1.4970 e−86 1.3548 e−80 5.6960 e−05 0.001.2 e−03

6 Expanded 
Schaffers 
function

f6(x) 0.0017 0.0097 0.0065 0.0532

7 Lunacek 
bi-Rastrigin 
function

f7(x) 2.3231 e−09 2.7252 e−07 0.0373 0.1205

8 Levy Func-
tion

F8(x) 70.1407e + 00 70.0737 e + 00 70.3698e + 00 78.0292e + 00

9 Modified 
Schwefel’s 
Function

F9(x) 3.0417e + 06 4.1183e + 06 4.1479e + 06 4.1482e + 06

10 High Con-
ditioned 
Elliptic 
function

f10(x) 1.4715 e−90 3.5101 e−80 3.5632 e−04 1.6684 e−80

11 Discuss 
function

F11(x) 1.4795 e−93 1.7573 e−73 8.6146 e−13 3.1554 e−22

12 Ackley’s 
Function

F12(x) 1.6556e + 002 1.6556e + 002 1.6587e + 002 8.5076e + 00

13 Weierstrass 
Function

F13(x) 9.441375732422 e−03 9.441375732713 e−03 9.441375732812 
e−03

9.441375733129 
e−03

14 Griewanks 
Function

F14(x) 9.8255 e−14 5.6654 e−08 0.3131 e−04 1.0852 e−07

15 Katsuura 
Function

f15(x) 1.4746 e−11 1.7937 e−10 4.4305 e−10 1.7377e−10

16 HappyCat 
Function

f16(x) 3.5338 e−05 1.7126 e−04 0.9555 1.6875 e−08

17 HGBat 
Function

f17(x) 1.4610 e−06 2.7428 e−06 2.5256 e−03 8.2076 e−04

18 Expanded 
Griewanks 
plus Rosen-
brocks 
Function

f18(x) 25.312 63.6412 4.5131 7.9816

19 Schaffer’s 
function

F19(x) 0.0010 0.1606 0.0090 0.4613
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Fig. 2  Flowchart to determine the ROM coefficients
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Step 2  Evaluating the objective function.

Here, to determine the ROM coefficients of the MSMIB system, ISE is used as the 
objective function. The reason behind the selection of this function is it is the most 
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popular and efficient measure of the dynamic execution of the system. The below equa-
tion depicts the expression for ISE.

Here, ‘e’ is the error between the step responses of the HOS and reduced order system 
(ROS). Here y(t) and yr(t) are the step responses of the original HOS and ROMs, respec-
tively. IWOA is used to minimize the objective function J1 so that the derived ROM can 
retain the maximum dynamic response of the original HOS.

Step 3  Shrinking encircle mechanism for the position update of hunting agent.

Here, the ROM coefficients which are to be optimized are selected as search agents. All 
the ROM coefficients follow Eqs. 16–18 to update their positions.

Step 4  Spiral mechanism for the position update of the hunting agent.

All the ROM coefficients to be optimized follow Eqs. 19–20 to update their positions. 
IWOA has been run several times until the optimized ROM coefficients are obtained. 
Figure 2 shows the flow chart for IWOA to optimize the ROM coefficients.

Numerical examples and results
To investigate the performance of the proposed IWOA-based MOR technique, three 
practical examples are considered; out of them, two are SISO systems and one is a prac-
tical MIMO system (MSMIB system).

Example 1 single input single output (SISO) system
To start with, a seventh-order HOS is taken as one of the test examples collected from 

the literature. Here, the coefficients of the numerator and denominator of the HOS are 
assigned as the tunable elements to minimize the fitness function. The boundary values 
of tunable elements are selected and the process of optimization is started with the gen-
erations of random solutions. The original HOS of the SISO system is given by

The optimized second-order ROM of the original HOS by using IWOA is shown 
below..

The second-order ROMs of classical methods are compared with the proposed 
IWOA-based ROM (IWOA-ROM) and are depicted in Table 3. The ISE values are also 
presented in the table. Table 3 represents the comparison of ROMs of classical and heu-
ristic techniques with the proposed ROM.

(23)J1 =

t
∫

0

(e)2 =

t
∫

0

[y(t)− yr(t)]
2

(24)

G7(s) =

2000s6 + 121700s5 + 1.21× 106s4 + 7.454 × 106s3 + 5.527× 107s2

+3.156× 107s + 2.075× 106

s7 + 65.85s6 + 984.2s5 + 12130s4 + 97300+ 429400+ 2.0188× 106s + 999500

(25)R2(s) =
45s + 9.8332

0.1s2 + 0.035s + 3.712
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The step responses of original HOS, IWOA-ROM and ROMs of other heuristic and 
classical techniques are depicted in Fig. 5. Figure 6 depicts the bode plot of original HOS, 
IWOA-ROM, and ROMs of other heuristic and classical techniques. From the simulation 
results, it is proven that the IWOA-ROM exactly matches with original HOS in the major-
ity of the regions, i.e., at both transient and steady states. The phase margin and gain margin 
of the IWOA-ROM closely coincide with the original system when compared to other algo-
rithms. Hence, it is observed that the IWOA gives optimum ROM than other techniques 
in both time and frequency domains. The convergence plots of the IWOA, WOA, DE, and 
PSO algorithms are shown in Fig. 7.

Example 2  To investigate the worth of the IWOA, here another example of a practical 
case study is considered. The linearized section of the air-core transformer, which con-
sists of ten segments, is considered as a second example. The transfer function of the air 
core transformer is obtained as.

Table 3  Comparison of ROMs with proposed IWOA

Name of the method Reduced order model ISE

IWOA 45s+9.8332

0.1s2+0.035s+3.712
9.3080e + 03

WOA 97.99s+30.08

0.4792s2+s+11.98
1.6 63e + 04

BAT [33] 72.3394s+4.88324

s2+5.0995s+4.5278
1.7117e + 04

FFA [32] 67.779s+4.5278

s2+5.0995s+2.3277
1.7204e + 04

DE [29] 100s+100

0.4068s2+s+9.731
1.3323e + 04

PSO [28] 100s+42.21

0.403s2+s+20
1.5409e + 04

C.B. Viswakarma [41] 187s+12.64

s2+10.88s+6.087
1.5660e + 04

Jayantha Pal [6] 2.938×10
7
s+2.075×10

6

5.533×104s2+1.139×106s+9.995×105
1.3125e + 04

Y Shamash [37] 0.03787s+0.017346

s2+0.5462s+0.03591
1.8624e + 04

Seshadri et.al [4] 1.13×10
6
s+999500

2.355×107s2+3.144s+2.075×106
1.8624e + 04

Routh approximation [1] 81.98s+5.39

s2+5.684s+2.596
1.6959e + 04

Fig. 5  Comparison of IWOA-ROM with ROMS of other techniques for the step input
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(26)

G(s) =

(s9 + 510.1s8 + 1.106e5 s7 + 1.33 e7 s6 + 9.691 e8 s5 + 4.393 e10 s4+

1.223 e12 s3 + 1.981 e13 s2 + 1.652 e13 s + 5.211 e14)

(s10 + 529.8s9 + 120200s8 + 1.527 e7 s7 + 1.191 e9 s6 + 5.892 e10 s5 + 1.842 e12 s4

+3.513 e13 s3 + 3.784 e14 s2 + 1.965 e15 s+ 3.32 e15)
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Fig. 6  Comparison of IWOA-ROMs with ROMs of other techniques with a bode plot
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The IWOA has been run several times until the optimized second-order ROM is 
attained. The optimized ROM in the second-order form using IWOA is depicted below.

The derived second-order IWOA-ROM is compared with other ROMs which were 
determined using WOA, DE, PSO, and classical methods that existed in the literature. 
The details of ROMs are reported in Table  4. Table  4 presents the comparison of the 

(27)R2(s) =
0.6318s + 7.112

0.6419s2 + 16.58s + 45.35

Table 4  Comparison of IWOA-ROMs with some familiar ROMs

#Method# Reduced second-order system ISE

IWOA R2(s) =
0.6318s+7.112

0.6419s2+16.58s+45.35
2.7330e−10

WOA R2(s) =
1.972s+28.25

0.3372s2+60s+180
3.1355e−9

DE[29] R2(s) =
1.977s+31.02

0.291s2+65s+197.7
5.7048e−09

PSO [28] R2(s) =
1.506s+31.39

0.477s2+65.24s+200
6.2590e−09

EDE [36] R2(s) =
0s+1568.5185

s2+6090.422363s+200
3.92e−04

EDE & Improved MMPA method [37] R2(s) =
0.400757s+200.396591

s2+780.5269s+1276.7544
4.016e−04

PSO-DV[38] R2(s) =
5.00995s+129.01962

s2+523.004761s+822.001831
4.1e−04

Sambapriya et.al [40] R2(s) =
0.8664s+7.328

s2+18.32s+46.83
3.32e−04

Pole cluster & Pade Approximation[ 22] R2(s) =
−18.77s+119.7

s2+90s+762.6
5.7586e−7

Srinivasan & Krishnan [42] R2(s) =
1.603s+27.57

s2+58.412s+175.96
3.7411e−6

C.B. Vishwakarma [41] R2(s) =
1.648s+29.92

s2+62.59s+190.64
9.7279e−9

Girish Parmar [43] R2(s) =
3.326s+48.3

s2+105.95s+308.159
2.4507e−6

Y Shamash [44] R2(s) =
0.5178s+1.633

s2+6.159s+10.41
2.2015e−07

Jayantha pal [6] R2(s) =
9.751e13s+5.211e14

2.28e14s2+1.53e15s+3.32e15
2.3303e−07

VV Seshadri [4] R2(s) =
0.5178s+1.633

s2+6.159s+10.41
2.2015e−07

Fig. 8  Comparison of IWOA-ROM with ROMS of other techniques for the step input
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IWOA-ROM with the ROMs of the other techniques which are available in the litera-
ture. The ISEs of all the techniques are also depicted in the table. It is examined from 
the results that the IWOA-ROM has provided the smallest amount of ISE value when 
contrasted to other methods. The step responses of original tenth-order HOS, IWOA-
ROM and other ROMs are shown in Fig. 8. It is proven from the responses that the pro-
posed IWOA-ROM exactly matches with the original HOS at all the regions, i.e., at both 
transient and steady states. Hence, it can be concluded that the proposed IWOA has 
succeeded in finding an optimum ROM when compared to other techniques (Figs. 9 and 
10).

Fig. 9  Bode response comparisons of original HOS and Proposed ROMs
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Fig. 10  Convergence plots of proposed and other algorithms
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Example 3  MSMIB system (MIMO system).

This MSMIB system gives the ninth order when it is modeled and is taken as the third 
example to derive its equivalent fourth-order ROM. The main objective of reducing the 
ROM into the fourth order is to retain the majority of the dynamic performance of the 

Table 5  Operating conditions for MSMIB system

Loading condition P (p.u) Q (p.u)

1 1.1 0.5

2 0.8 0.4

3 0.4 0.1

Fig. 11  The block diagram Heffron-Phillip’s model
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Fig. 12  Convergence plots of IWOA, WOA, DE, and PSO techniques
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original HOS. Under this example, three typical operating conditions have been consid-
ered and subsequent ROMs are derived to examine the strength of the IWOA technique. 
Table 5 shows the operating conditions taken for deriving G-constants. The block dia-
gram of the MHP model for the MSMIB system is depicted in Fig. 11. The MHP model is 
formulated using the G-constants, which can be determined from the following expres-
sions (Fig. 12).

For any operating condition, the G-constants are represented as

where Eqo = E′
qo
− (Xq − X ′

d)id . For any operating condition of the MSMIB system, VS is 
the transformer secondary bus voltage, δs is the load angle measured to transformer sec-
ondary voltage,E ′

q is the field flux transient emf, Xq is the reactance of q-axis, Xd is the 
reactance of d-axis, X ′

d is the reactance of q-axis, id is the stator current of d-axis, iq is 
the stator current of q-axis, Efd is the field voltage, Te is the time constant of exciter, Ke is 
gain of exciter, Vref  is the reference voltage, Vpss is the input of the PSS, Vt is the terminal 
voltage of the generator, Xt is the reactance of the transformer. The K-constants for the 
three operating conditions are determined by using the above expressions and listed in 

(28)G1 =
VsoEqosi nδs

Xq + Xt
+

Xq − X ′
d

Xt + X ′
d

Vssinδs

(29)G2 =
Xq + Xt

Xt + X ′
d

iq

(30)G3 =
Xt + X ′

d

Xd + Xt

(31)G4 =
Xd − X ′

d

Xt + X ′
d

VsEqsi nδs

(32)G5 =
XqVdVscosδs

(Xq + Xt)Vt
−

X ′
dVs sinδs

(Xt + X ′
d)Vt

(33)G6 =
Xt

Xt + X ′
d

Vq

Vt

(34)Gv1 =
Eqosinδs

(Xt + Xq)
−

(Xq − X ′
d)Iqcosδs

(X ′
d + Xt)

(35)Gv2 = −
(Xd − X ′

d) cos δso

(X ′
d + Xt)

(36)Gv3 =
XqVdsinδs

Xq + Xt
+

X ′
dVqcosδs

(Xt + X ′
d)Vt
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Table 6. Table 6 shows the G-constants determined for the considered operating condi-
tions. Using the K- constants and the machine data, the state space representations of 
the MHP model for all three operating conditions have been derived and are shown in 
Appendix. The fourth-order ROMs of HOS in state space for three operating conditions 
using the IWOA technique are represented form in Table  7. Table  7 depicts the state 
space representation of IWOA-ROMs.Comparison plots of HOS and ROM for IWOA, 
WOA, DE, and PSO-based algorithms for the three loading conditions are shown in 
Fig. 13. Plots displayed in Fig. 13a–c) give the step responses of the loading condition. 
Plots in Fig. 13d–f depict the step responses of loading condition 2, and the plots for the 
third loading condition are shown in Fig. 13g–i. The dark blue color depicts the response 
of the original HOS for the step input, the pink color stands for the response of IWOA-
ROM for the step input, the red color plot gives the step response of the WOA-ROM, 
and the green color corresponds to the response of the PSO-ROM for the step input. 
All step responses are compared on a common time scale to test their performances. 
Simulation results clearly show that the behavior of the ROM obtained from IWOA 
closely matches the behavior of the original HOS when compared to the other ROMs at 
transient and steady-state conditions for loading condition one. Similarly, ROMs second 
and third loading conditions also exhibited the same type of performance when com-
pared to the other algorithms. Hence, it is concluded from the results that the ROMs 

Table 6  K- constants for operating conditions of MSMIB system

Operating 
Point

K1 K2 K3 K4 K5 K6 KV1 KV2 KV3

1 2.1697 1.0013 0.3429 1.4147 − 0.038 0.5842 0.4562 − 1.29 0.6507

2 1.9788 0.8945 0.3429 1.2714 0.0092 0.5593 0.2429 − 1.43 0.6061

3 1.6077 0.7416 0.3429 1.0686 0.0642 0.4979 − 0.005 − 1.59 0.5229

Table 7  Optimized IWOA-ROMs in state space representation

Loading 
condition
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derived from the IWOA technique retain most of the dominant behavior of its original 
higher-order plant at all the loading conditions when compared to the ROMs derived 
from WOA, DE, and PSO algorithms.Further, to show the efficacy of the proposed work, 
bode plots of the obtained ROMs and the original HOSs are shown in Figs. 14, 15 and 
16. Plots of four important states: �δ, �ω, �Eq, �Efd of original HOS and ROMs are 
presented in the figures. The black color plot represents the response of the original 
ninth-order MSMIB system, the dark pink color represents the response of the pro-
posed IWOA-ROM, the blue color plot represents the response of the WOA-ROM, the 
red color plot depicts DE-ROM and the response of PSO- ROM is represented in green 
color. The results prove that the phase margin and gain margins of the proposed IWOA- 
ROM of four states match with the original HOSs’ states in a better way when compared 
to other ROMs.

Conclusions
IWOA-based MOR technique is proposed on three typical complex LSSs. ISE is con-
sidered as an objective function to optimize the coefficients of ROMs of the origi-
nal HOS systems. SISO and MIMO systems are considered to study the comparative 
analysis. The MHP model, which is having ninth order, air core of the transformer of 
the order of tenth order, and seventh-order systems are taken as test cases to exam-
ine the performance of the proposed IWOA-based MOR technique. Performance 
of the ROMs derived using WOA, DE, and PSO and other classical techniques has 
been contrasted with IWOA- ROM. The test results conclude that the IWOA-ROM 
exhibited better performance when compared to other methods.

Fig. 13  Step response comparisons of original HOSs and ROMs for the three Step loading conditions
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Fig. 14  Bode plot responses of loading condition 1
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Fig. 15  Bode plot responses of loading condition 2
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Appendix
State space representations of original HOSs of three operating conditions.

Operating condition 1
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


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Fig. 16  Bode plot responses of loading condition 3
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Operating condition 2

Operating condition 3
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