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Abstract 

The need to integrate renewable energy sources into the energy mix is felt because 
of the many advantages they offer over fossil fuels, notably in terms of environmental 
protection and more uniformly distributed availability. The intermittent and stochastic 
ones, such as wind power, present many problems to network operators due to the 
volatile nature of their output power. This work presents a new technique for optimally 
forecasting the power output of a wind turbine installed at any geographic point 
located within a very large area. Once the study area is defined, it is gridded and opti-
mally sampled in order to have a truly representative number of geographical points. 
The study area is then divided into sub-areas by grouping the samples by similarity of 
variation of meteorological parameters (wind speed and direction). For each sub-area, 
the optimal production periods are then identified and used for forecasting the power 
output. The forecasting technique used combines the LSTM model for forecasting 
meteorological parameters and the linear model for approximating the power curves 
of wind turbines. The technique was applied to the Beninese territory on which 90 sub-
zones were formed. A 12 h forecasting of wind speed, wind direction and wind power 
were presented for one of the sub-areas. The clustering results gave a Silhouette score 
of at least 0.99. The wind speed and direction forecasting gave (0.34 m/s, 7.8 rad) and 
(93%, 70%) for RMSE and R2, respectively.

Keywords: Optimal production, K-means model, Wind power, Wind speed, 
Forecasting, LSTM

Introduction
The announced depletion of conventional energy sources is the main reason for the 
interest in renewable energies in recent years. Indeed, for the resources identified in 
54 years, 63 years, 112 years and 100 years, respectively, according to a report of 2021 
of the International Energy Agency (IEA), oil, gas, coal and uranium are expected to run 
out contrary to the renewable ones which are supposed to be inexhaustible on a human 
scale [1, 2]. At the same time, the IEA estimates that by 2030, global energy demand 
is expected to grow by 45% due to the industrialization and development policies of 
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various countries. In this context, countries with high production and high self-con-
sumption will find themselves unable to meet all their energy needs with their energy 
mixes mainly made up of generators running on conventional resources. Countries with 
low production will consequently see their energy import costs increase and the quantity 
of imported energy decrease because of the difficulties that exporting countries would 
encounter. It should also be noted that these conventional resources are less evenly dis-
tributed than renewable energy sources and that climate change policies now require us 
to move toward green energy.

It seems quite obvious that new policies must be put in place, first of all for the exploi-
tation of existing resources, but also for their production. Thus, two major solutions are 
emerging: energy efficiency and renewable energy sources as a means of energy produc-
tion. Turning to this last solution, in terms of renewable energy production, Africa has 
an enormous potential with wind, solar photovoltaic (PV), hydroelectric, geothermal 
and biomass production of 978,066 TWh/year, 1,449,742 TWh/year, 1478 TWh/year, 
105 TWh/year and 2374 TWh/year, respectively [3]. A potential that should allow the 
entire African population to have access to electricity. But unfortunately, according to a 
2018 report by IRENA et al., 47% of the African population, i.e., more than 600 million 
people, 75% of whom live in rural areas, had no access to electricity [3]. Why this para-
dox? Looking closely, apart from the financial problems of exploitation of these renew-
able sources, they generally present problems of a natural and material nature. Indeed, 
the solar source is intermittent due to the natural movement of the earth around the sun 
and varies very randomly when it is available. This leads to a random variation of the 
output power of the PV generators. In the same way, the wind source (the wind) varies 
very randomly which leads to a random variation of the output power of the wind tur-
bines but also an intermittence of this one due to a minimum of starting speed. In sum-
mary, these wind and PV generators have performances and powers that vary not only 
with time but also with the environment (space) in which they are installed.

In the literature, several solutions are proposed to the intermittence and random vari-
ability of these sources. For intermittency, it is possible to associate several generators 
with complementary productions: this would allow to have a production almost all the 
time without big interruption [4–10]. Another solution to intermittency is energy stor-
age, but on a large scale, this is expensive from production to operation and recycling 
[11–14]. We can also think of international exchanges when the different countries are 
interconnected [15–17] or even the management of consumption by encouraging users 
to consume during periods of high production. For the random variability of the out-
put power, the adequate solution encountered in the literature remains the forecasting 
thanks to the artificial intelligence techniques which allow to have an overview of the 
future evolution of these powers [18–22].

In a few years, it will be of great interest for everyone to be able to identify in his space 
any exploitable geographical point that can allow the development and exploitation of 
solar and wind resources mainly. It will also be necessary to be able to make an optimal 
and adapted forecast according to the type of system and the environment in order to 
be able to integrate well these fluctuating resources. In this paper, we propose a tech-
nique for forecasting and identifying the optimal production periods of a wind gen-
erator installed at any geographical point located within a very large area. The second 
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part presents the material used and the methodology adopted, the third part the results 
obtained and the last part the conclusion.

Methods
Weather parameters influencing the variability of wind power

The random variation of the output power of the wind turbines is due to the randomness of 
the meteorological parameters. To control this variability, it is necessary to identify and con-
trol the evolution of these influencing parameters, as shown in the research flowchart in Fig. 1.

As with photovoltaic modules, there are different models describing the behavior of a wind 
turbine [23–26]. The output power of the wind generator is most often obtained from its 
power curve, which represents the output power as a function of the wind speed. It is pos-
sible that the curve used corresponds to a real generator or is obtained from a model. The 
most commonly used model is the Pallabazzer model. It is also possible to use the mechanical 
power on the shaft of the wind turbine determined from the wind speed, the area swept by the 
blades and by the power coefficient.

From these different models, we can easily deduce the wind speed and direction as 
input weather parameters. Thus, these models generally take the wind speed as input to 
give the associated electrical power for a given wind turbine. The wind direction is used 
to orient the blades of the wind turbine in order to extract a maximum of energy. We 
therefore retain these two parameters for the following.

Fig. 1 Research flowchart
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Study area definition, gridding and sampling

Once the meteorological influencing parameters have been identified, it is necessary to 
delimit the study area and to record these parameters on representative samples of the 
area, which constitute geographical points. For our study, we considered the entire Beni-
nese territory, which covers 114,763  km2, as our study area.

The gridding and sampling technique is shown in Fig. 2. We define two types of sam-
ples: the green samples are the ones used for the work, and the red ones are the ones 
used for the results validation. We also define a grid spacing �t which is the difference 
in latitude or longitude between two test or validation samples. We will see later on how 
the gridding step has been optimized.

Data and database used

As mentioned in the previous paragraph, the data used in this work are satellite data 
obtained from the NASA database. The main characteristics are presented below:

• Database: POWER LARC NASA [27];
• Data frequency: Hourly;
• Data types:

• V50M: Wind speed at 50 m from the ground;
• D50M: Wind direction at 50 m from the ground;

• Period: From January 1, 2012, to December 31, 2021.

Fig. 2 Gridded and sampled map of Benin
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Sample data pre‑processing

Once the grid has been completed and the samples defined, meteorological data (wind 
speed and direction) must be collected on all samples. For this study, we use hourly sat-
ellite data taken from the NASA database at each geographical point (test and trial sam-
ples) from January 1, 2012, to December 31, 2021.

These data must be pre-processed so that we can derive the correct information that 
we desire. There are several processing steps for this purpose.

Identification and suppression of outliers

An anomaly or outlier is best described as an observation that differs so much from 
the rest of the record that it is suspected to have been generated by a different process 
(Hawkins, 1980). These outliers can be due to a variety of processes, such as measure-
ment error or specific phenomena, such as the occurrence of a fire or weather event. In 
view of the large number of applied areas that make use of outlier detection, the existing 
literature offers a considerable number of approaches devoted to it. The easiest way to 
identify outliers in a dataset is to represent and observe them. This allows us to notice 
the values that are abnormally far from each other. Box plots, for example, allow us to 
visualize the distribution of a single variable. These graphs are based on the median, as 
well as the lower and upper quartiles. An outlier is any extreme value, greater or less 
than I times the interquartile range. Usually I is 1.5. We can also perform statistical cal-
culations such as the calculation of the mean, the standard deviation, the maximum or 
the minimum. These statistics make it possible to quickly identify possible anomalies in 
the data set.

Check for data stationarity

Since our data are time series, it is important to ensure the conformity of some of their 
properties. An important property of the time series is its stationarity. If a process is 
stationary, it means that its statistical properties do not vary over time, namely its mean, 
its variance (homoscedasticity) or its covariance. This notion of stationarity represents a 
crucial point in the analysis of time series, where the estimation of non-stationary series 
leads to spurious or illusory regressions. A stationarity study of the data is therefore 
important to ensure that the structure of the process that generated these series does 
not change over time: this is a very important condition for the time series forecast. The 
augmented Dickey–Fuller test (ADF) is an appropriate statistical tool. The time series 
considered is stationary if the p value is low (according to the null hypothesis).

Adding new variables to the dataset

It is sometimes important to add new variables to the data set in order to facilitate the 
learning of the models. For time series such as meteorological data (wind speed, irradia-
tion, temperature…), the notion of periodicity is important for their analysis and inter-
pretation or forecast. In this work, the series undergo a fast Fourier transform in order 
to identify the highest frequencies. These frequencies are then used to add new variables 
by the formulas (1) and (2).
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Xsin and Xcos are the new variables to be added for an identified important frequency 
f = 1

/
T  and t is the time of data acquisition. It is also important in our case to make the 

models understand the concept of wind direction. Indeed, wind directions are angles 
and the models should understand for example that 0° and 360° are identical. Also, the 
wind direction is not very useful if the wind is weak. So, we associate these two variables 
(wind speed and direction) to create two new variables as shown in Eqs. (3) and (4).

Wx and Wy are the two new variables, Ws and Wd ,  respectively, the wind speed and 
direction at time t.

Data normalization or standardization

It is then essential, when one has in one’s dataset variables of different orders of mag-
nitude, to bring them to the same scale for training the models. For this purpose, two 
techniques are used: standardization and MinMax normalization. In this work we use 
the MinMax normalization presented by Eq. (5) which does not require the knowledge 
of data distribution.

xnorm represents the normalized x variable, a and b are the bounds of the new scale.

Data set subdivision

The dataset is then subdivided into three parts: the trainset (70%) to train the models, 
the validation set (20%) to set the hyper parameters of the models and the test set (10%) 
to test them.

Study area subdivision

It should be remembered that the objective is to be able to say at any point of the study 
area how the power output of a wind turbine will evolve in the near future and in which 
periods of the year a good production could be obtained. For this purpose, we divide the 
study area into sub-areas (Fig. 3) in which the wind profiles over the study period are 
identical or nearly so.

This is equivalent to grouping the samples (geographical points) whose meteorological 
parameters vary identically. For this study, a similarity threshold of at least 90% has been 

(1)xsin = sin

(
t ∗

(
2 ∗ π

T

))

(2)xcos = cos

(
t ∗

(
2 ∗ π

T

))

(3)Wy = Wssin(Wd)

(4)Wx = Wscos(Wd)

(5)xnorm = a+
(x −min(x))(b− a)

max(x)−min(x)
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set. This technique will allow to reduce the number of study samples because we could 
take without risk a sample in each sub-area to represent the whole sub-area. In the lit-
erature, several time series clustering models have been identified [28–35].

Clustering is a statistical analysis method used to organize raw data into homogene-
ous silos. Within each cluster, data is grouped according to a common characteristic. 
The ordering tool is an algorithm that measures the proximity between each element 
based on defined criteria. In this study, we used the k-means algorithm for clustering 
wind speeds as time series. K-means is an unsupervised non-hierarchical clustering 
algorithm. It allows to group in K  distinct clusters the observations of the data set. Thus, 
similar data will be found in the same cluster. Moreover, an observation can only be 
found in one cluster at a time (exclusivity of membership). The same observation cannot 
belong to two different clusters.

Choosing a number of clusters K  is not necessarily intuitive especially when the data-
set is large. A large number K  can lead to a too fragmented partitioning of the data. This 
will prevent the discovery of interesting patterns in the data. On the other hand, a num-
ber of clusters that is too small will lead to having, potentially, too generalized clusters 
containing a lot of data. In this case, there will be no "fine" patterns to discover.

For the same dataset, there is not a single possible clustering. The difficulty will 
be to choose a number of clusters K  that will allow to highlight interesting patterns 
between the data. The most common method to choose the number of clusters is to 
run K-means with different values of K  and to calculate the variance of the different 
clusters. The variance is the sum of the distances between each centroid of a clus-
ter and the different observations included in the same cluster. Thus, we try to find a 

Fig. 3 Sub-area cutting technique
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number of clusters K  such that the selected clusters minimize the distance between 
their centers (centroids) and the observations in the same cluster.

In our case, the number of clusters represents the different number of wind profiles 
that would have been identified in the whole study area. The search for a maximum 
number of clusters would allow us to optimize the grid spacing and thus the number 
of samples representative of the study area. Figure 4 shows the optimization principle 
that we have developed: we increase the number of samples until the number of clus-
ters (wind profiles) does not increase anymore.

Fig. 4 Grid pitch and cluster number optimization flow chart
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Sub‑area characterization

Once the sub-areas have been formed, it is now necessary to identify in which period(s) 
of the year one could optimally produce with a wind turbine. To do this, for each sub-
zone, we must:

• identify the periods where wind speeds are acceptable (medium high with low vari-
ance);

• identify in which direction the wind turbine blades should be oriented.

We use the Weibull distribution to identify the most frequent wind speeds and the 
wind roses to identify the orientations.

Wind power forecasting

Forecasting technique options

Once the optimal production periods have been identified, the data on these periods 
are used to train wind power forecasting models, as it will be useless to pretend to make 
a forecast on periods when the wind turbine cannot be used. In the literature, several 
wind power forecasting techniques have been identified [20, 36–46]. The first technique 
is shown in Fig. 5.

This first technique exploits a history of power readings on an existing wind turbine 
and forecasts a succession of future values of this power from a succession of past values 
using a time series forecasting model. It presents a simple architecture but the devel-
oped forecasting model is only usable for the installation on which the records have been 
made. Moreover, this configuration requires a long period of power measurement for 
the forecast to be effective.

A second technique (Fig. 6) we encountered combines a time series forecasting model 
and a regression model. The time series forecasting model predicts the meteorological 
influence parameters (wind speed in our case) and then the regression model associ-
ates the wind turbine power values to the predicted influence parameter values. For this 
purpose, historical data of the influence parameters and the wind power are required. 
The architecture is more complex and as for the previous one, the model is only usa-
ble for the system for which it is developed and, in the environment, where the system 
is located. Indeed, as the meteorological parameters are a function of the geographical 

Fig. 5 Forecasting architecture 1
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locations, for the same system in two different environments the forecasting models will 
be different.

The last technique (Fig. 7) always combines a time series forecasting model to estimate 
future values of the influencing parameters and a wind power estimation model (Palla-
bazzer model, linear model, Chang model) that typically takes wind turbine character-
istics such as Vcut−in the interlocking speed, Vcut−off the trip speed, Vrated the speed for 
which rated power is obtained, Prated the rated power. Thus, this technique can be easily 
retrofitted to another wind turbine by changing the characteristics of the wind turbine in 
the power estimation model. Only the influence parameter prediction model has to be 
repeated when the installation site changes. This technique has the advantage of being 
more flexible, easy to adapt and does not require the system to be existing. It is thus the 
technique retained for the continuation.

Forecasting model’s selection

The forecasting technique chosen involves using a wind speed and direction forecasting 
model as a time series and then estimating future power from the predicted speed and 

Fig. 6 Forecasting architecture 2

Fig. 7 Forecasting architecture 3
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direction from a wind turbine power curve approach model. In [36], Wang et al. give a 
fairly comprehensive summary of wind speed and wind power forecasting models. From 
this summary, we can retain as the most efficient basic wind speed forecasting mod-
els, the LSTM (Long short-term memory) and CNN (Convolutional neural network) 
models.

The convolution neural network is an improvement of the traditional neural network. 
It was originally designed for image processing and allows to encode the specific features 
of the image while reducing the number of parameters needed for the model configura-
tion. Globally, CNNs apart from the input and output layers consist of three types of lay-
ers: convolutional layers, pooling layers and fully connected layers (Fig. 8).

The LSTM neural network is an improvement of the traditional recurrent neural 
network to overcome the vanish gradient problem. An LSTM unit is then composed 
of a cell, a dynamic memory C and three gates: Forget Gate, Input Gate, Output Gate. 
Indeed, the Forget Gate is an operation which leads the unit to forget or to decrease the 
weight of an information which was useful at the time t − 1 but which is not any more at 
the time t whereas the Input Gate allows the storage of new non-existent information or 
of very weak weight at the time t − 1. Finally, the output Gate controls the information 
which will be transmitted at time t + 1 according to the dynamic memory C and the acti-
vation function. The LSTM cell, thanks to this memory vector C, memorizes the values 
on arbitrary time intervals and the three gates regulate the flow of information entering 
and leaving the cell (Fig. 9).

These two models will be compared to select the most efficient one for each wind pro-
file (wind speed variations in each sub-area).

To estimate the power produced by wind generators, we use the characteristic power 
curve. This curve allows to know the power produced from the wind speed. It is specific 
for each wind generator. There are two different approaches for modeling wind turbines, 
namely the application of a power curve model available in the literature on the one 
hand or the use of real curves to which an interpolation method is applied on the other 
hand. In the following, we present three power curve modeling methods, as well as dif-
ferent power curves of small and medium power machines available on the market. The 
characteristic parameters of each power curve are:

Fig. 8 CNN neural network architecture
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• Vcut−in : speed at which the power is switched on;
• Vrated : speed at which the rated power is obtained;
• Vcut−off : the speed at which the power is switched off;
• Prated : rated power.

The linear model is the simplest and assumes that the power variation between Vcut−in 
and Vrated is linear. Thus, the reduced power curve is expressed by three Eq. (6):

where the coefficients a and b are obtained by (7):

Studies show an overestimation of the productivity of wind generators, but despite this, 
this model is often used in studies of hybrid systems.

We also have the Pallabazzer model [47, 48], which differs from the linear model by the 
nonlinear shape of the curve between the speed of engagement and that for which we 
obtain the nominal power. In this part, the reduced power is expressed by:

Some authors introduce a third degree polynomial in the central part of the curve [49]:

(6)P =






0, V ≤ Vcut−in

a+ b ∗ V , Vcut−in < V < Vrated

1, Vrated < V < Vcut−off

(7)

{
a =

Vcut−in

Vrated−Vcut−in

b =
1

Vrated−Vcut−in

(8)P =

(
V 2

− V 2
cut−in

V 2
rated − V 2

cut−in

)

(9)P = a1V
3
+ a2V

2
+ a3V + a4

Fig. 9 LSTM unit architecture
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where a1 , a2 , a3 et a4 are calculated on the basis of the power curve of the wind generator.
The most commonly used model is the Pallabazzer model (Notton et al. 2001; Prasad 

and Nataeajan2006). It is also possible to use the mechanical power on the shaft of the 
wind turbine determined from the wind speed (V), the area swept by the blades ( Ar) and 
by the power coefficient ( Cp):

Subsequently, we selected the Pallabazzer model for wind power estimation.

Forecasting model hyperparameters optimization

It is important to find out for which parameters of a model one could obtain better per-
formance. As mentioned above, we have selected the CNN and LSTM models as the 
meteorological parameter forecasting models. The hyperparameters of these two models 
are presented in Table 1 along with the ranges of values that these hyperparameters can 
take for optimization.

We vary the input data sequence between 3 and 72 h, the sequence to forecast between 
1 and 24 h. For the CNN network, the number of filters is varied between 50 and 300, 
the number of units between 100 and 1000. For the LSTM network the number of units 
is also varied between 100 and 1000. We use three different learning rates:  10–2,  10–3, 
 10–3. This optimization is done with the Keras Tuner library under Python [50].

Models training

To train the models, we use the meteorological data (wind speed and direction) of the 
identified optimal production periods as well as the optimal hyperparameters obtained. 
The trainings are performed under Python3 where the CNN and LSTM models are 
developed with the TensorFlow library [51].

Clustering and forecasting model’s performance evaluation

It is important to choose the right metric to evaluate a model, otherwise the assessment 
of its performance would be wrong. The following metrics are used to evaluate the mod-
els developed in this work.

The determination coefficient R2 is an indicator that allows to judge the quality of 
a linear regression, simple or multiple. With a value between 0 and 1, it measures the 
adequacy between the model and the observed data. In the case of a simple linear 

(10)Pmec =
1

2
CpArρaV

3

Table 1 CNN and LSTM parameters

CNN parameters LSTM parameters

INPUT_WIDTH: 3 to 72 h

LABEL_WIDTH: 1 to 24 h

Filters: 10 to 300 Units: 10 to 1000

Units: 10 to 1000

Learning_rates: 10−2, 10−3, 10−4 Learning_rates: 
10−2, 10−3, 10−4



Page 14 of 33Agbomahena et al. Journal of Electrical Systems and Inf Technol           (2023) 10:23 

regression, it is the square of the correlation coefficient. The R2 is defined as the 
proportion of variance explained in relation to the total variance, i.e., [1 −  (sum of 
squared residuals/total variance)]. This coefficient applies to both simple and multi-
ple regression.

The mean square error (MSE) is defined as the average of the squares of the errors 
and allows to evaluate the quality of a prediction model. It penalizes the largest 
errors and outliers (outliers). Its expression is given by the following formula:

with Yi the actual value and Ŷi the predicted value and n the prediction size.
The root mean squared error (RMSE) is an extension of the MSE and allows to 

reduce the MSE to the same unit as the quantity evaluated. It is defined as the square 
root of the MSE:

The normalized root mean squared error (NRMSE) is an extension of the MSE 
and is the most commonly encountered metric in the literature for evaluating wind 
speed prediction models. It is defined as the quotient of the root mean squared error 
and the mean or range of the values in the series.

The Silhouette score is the metric that indicates the quality of a clustering. It var-
ies between − 1 and 1:

• The classification is bad when we obtain a negative co-efficient;
• The classified element is close to the decision boundary or is alone in the cluster 

when we obtain a coefficient equal to zero;
• The classification is good when we obtain a positive coefficient.

Its expression is given by the formula (15):

where a and b represent, respectively, the average distance that separates the data point 
from its cluster and the neighboring cluster.

(11)R2
= 1−

∑n
i=1

(
Yi − Ŷi

)2

∑n
i=1

(
Yi − Y

)2

(12)MSE =
1

n

n∑

i=1

(
Yi − Ŷi

)2

(13)RMSE =

√√√√1

n

n∑

i=1

(
Yi − Ŷi

)2

(14)NRMSE =
RMSE

Ymax − Ymin
ouNRMSE =

RMSE

Y

(15)Ssil =
b− a

max(a, b)
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Results and discussion
Grid and sample results

Figure 10 recalls the principle of gridding and shows the range of variation of latitude 
(l) and longitude (L). It can be noted that the latitude of the samples was varied from 
5.625° to 12.6° and the longitude from 0.7° to 4.075°. The optimal grid step ∆t obtained 
is 0.15°. We recall that the optimal grid spacing is the spacing for which the number of 
clusters does not vary anymore, i.e., the number of different profiles of the meteorologi-
cal parameters (here the wind speed) does not vary anymore.

Thus, 0.15° separates in latitude or longitude two test samples or two validation sam-
ples and 0.075° separates in latitude or longitude a test sample and a validation sam-
ple. The test samples are those used for cluster formation and the validation samples are 
used to evaluate the quality of the formed clusters. We thus obtained 1080 test samples 
and 1080 validation samples.

Data presentation

Once the 1081 test samples were obtained, the wind speed and direction were down-
loaded for all of them for the study period (January 1, 2012 to December 31, 2021). 
Figure  11 shows the evolution of the mean, standard deviation and maximum for the 

Fig. 10 Benin map (study area) gridded
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wind speeds. We can see that there is no apparent anomaly. The averages vary between 
3.35 and 5.26 m/s with maxima ranging from 7.97 to 15 m/s. These statistics allow us 
to continue the study over the entire study area because wind turbines generally need a 
minimum of 3 m/s as a starting speed. We also note a variation of standard deviations 
between 1.17 and 2.2 m/s. These variations in statistics also show a difference in the dif-
ferent samples.

Clustering results

Once we are sure that the data are usable and that the study is useful for the entire study 
area, we proceed to clustering. In this step we group the samples whose wind speeds 
vary identically over the entire study area. In other words, each cluster represents a sub-
area within which the wind speed varies identically at all points. We obtained a total of 
90 clusters. Figure 12 shows the different Silhouette scores obtained for the 90 clusters. 
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We can notice that for 89 clusters, the Silhouette score is close to 1 which means that the 
similarity within these clusters is perfect. For cluster 90, the Silhouette score is 0. This 
value comes from the fact that within this cluster there is only one sample.

Figures 13 and 14 show the evolution of wind speeds within clusters 56 and 90 for the 
month of August 2020. We can notice that the curves are perfectly stacked for the clus-
ter 56. For cluster 90 we notice the presence of only one curve which confirms the value 
0 of the Silhouette score obtained. For ease of interpretation, the wind speed profiles 
of the samples have been named as follows: Wind_Speed_Latitude_Longitude. Results 
for the other clusters are available at [52].

Once the clusters are set up, the validation samples are then used to verify the repre-
sentation of the entire study area by the 90 clusters. Figure 15 shows the Silhouette score 
(quality of membership in one of the 90 trained clusters) for the 1080 validation samples.

We can notice that the silhouette scores are all above the threshold of 0.9 that we have 
set (vary between 0.96 and 1). We can therefore conclude that the wind speed variations 
in the whole study area can be represented by the 90 different profiles identified.

Characterization of each sub‑area

After clustering we have 90 sub-zones. Now we have to characterize each sub-area by 
determining the predominant wind directions and by determining the periods of the 
year when a wind turbine installed there could optimally produce. Given the number of 
sub-zones obtained, the following results will only be presented for cluster 56, an arbi-
trary choice. Indeed, any sub-zone could be chosen.

Figure 16 shows the wind rose for sub-area 56. We can notice that in this zone, the 
wind blows mainly to the southwest. This allows us to identify a good orientation of the 
blades in this area. Figure 17 shows the Weibull distribution as well as the frequency his-
togram of the wind speeds. We can see that the most probable wind speed is 5.4 m/s. We 
can also notice that the most convincing wind speeds are between 3.2 and 6.4 m/s. This 
speed range allows the installation of a wind turbine in this area. But in which period(s) 
of the year would we obtain an optimal production?

Figure  18 shows the monthly wind speeds and standard deviations for sub-area 56, 
which range from (3.37 m/s and 6.3 m/s) to (1.56 m/s and 2.3 m/s), respectively. In order 
to determine the optimal production period, we calculate the differences between the 
monthly wind speeds and monthly standard deviations (Fig. 19).

Knowing that the wind turbines start with minimum speeds between 7.2 and 10 km/h 
[53], we obtain for this sub-area an optimal production period going from November to 
July.

Wind speed and direction forecasting

Once the optimal production periods have been determined for each sub-area, the mete-
orological data for these periods are used to train the models according to the structure 
shown in Fig.  7. To do this, the wind speed and direction data are transformed using 
Eqs. (3) and (4) and then the prevailing frequencies of the speeds are used to add new 
variables to the data set according to Eqs. (1) and (2). Figure 20 shows the results of the 
fast Fourier transform (FFT) of the wind speed of sub-area 56.
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We can notice the attendance of the annual, daily, half-day, third day and quarter day 
periods. Figure 21 shows the appearance of the dataset after adding the new columns.

Table 2 and 3 present the optimization results of the CNN and LSTM hyperparam-
eters for wind speed and direction forecasts for sub-area 56. We can notice that for both 
models, the best forecast performances were obtained for a 12-h forecast from 18 h of 
past data. We therefore present here only the results for the 18_12 models.

Thus, it can be noticed that optimal (filters, units, learning rate) parameters of (70, 
590,  10–3) and (50, 300,  10–3) were obtained for the Wx and Wy predictions for the CNN, 
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respectively. For the LSTM, optimal (units, learning rate) parameters of (460,  10–3) and 
(160,  10–3) were obtained for the Wx and Wy forecasts, respectively.

For the prediction of Wx and Wy , we can notice that the best performing model is 
the LSTM with coefficients of determination  R2 and Root Mean Square Error RMSE of 
(86%, 0.47 m/s) and (91%, 0.33 m/s), respectively. The LSTM model is therefore retained 
for the forecast of wind speed and direction for this sub-area. Figures 22 and 23 show 
the forecast results of the parameters Wx and Wy for 12 h on three randomly selected 
parts of the test set.

We can notice from these forecast results that the forecast trend is often well predicted. 
Nevertheless, discrepancies can be noticed between the predicted and true Wx and Wy 

Fig. 17 Weibull distribution of sub-area 56

Fig. 18 Sub-area 56 monthly wind speeds and standard deviations
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parameters. This is due to the very random variation of the wind speed which makes learn-
ing difficult.

From the forecast values of Wx and Wy we can then deduce the values of wind speed and 
direction from Eqs. (15) and (16). We thus obtain for the 12 h of forecast of Wx and Wy , 
12 h of forecast of wind speed and direction.

{
Wy = Ws sin (Wd)

Wx = Ws cos (Wd)
⇒

Wy

Wx
= tanWd

(16)Wd = tan−1

(
Wy

Wx

)

Fig. 19 Optimal production period determination

Fig. 20 Sub-area wind speed FFT
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A validation of the forecasting performance of the models was performed on the 
data of 31 December 2020 and 1 January 2021. Figure 24 shows the 12 rows of input 

(17)Ws =
Wy

sin
(
tan−1 Wy

Wx

)

Table 2 CNN and LSTM parameters and performance for Wx forecasting

CNN parameters LSTM parameters

INPUT_WIDTH: 18 h

LABEL_WIDTH: 12 h

Filters 70 Units 460

Units 590

Learning_rates 10−3 Learning_rates: 10−3

RMSE 0.62 m/s RMSE 0.43 m/s

R2 83% R2 85%

Table 3 CNN and LSTM parameters and performance for Wy forecasting

CNN parameters LSTM parameters

INPUT_WIDTH: 18 h

LABEL_WIDTH: 12 h

Filters 50 Units 160

Units 300

Learning_rates 10−3 Learning_rates: 10−3

RMSE 0.54 m/s RMSE 0.39 m/s

R2 85% R2 90%

Fig. 22 Wx forecast for 12 h on three portions of the test set
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data and Fig. 25 the 12 rows of true values of the parameters Wx and Wy that the fore-
casts should give.

Figures 26 and 27 show the representative curves of target and predicted Wx and 
target and predicted Wy , respectively. We can notice that the forecasting is quite 
good.

The forecasting performances are presented in Table 4.
From the forecasting of Wx and Wy we deduce the values of wind speed and direction. 

Figure 28 shows the true (target) values of wind speed and direction that the forecasting 
should give.

Fig. 23 Wy forecast for 12 h on three portions of the test set

Fig. 24 Validation input data
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Figures 29 and 30 show the representative curves of target and predicted wind speed 
and direction, respectively.

Table 5 presents the forecasting performances. We can note coefficients of determi-
nation of 93% and 70%, respectively, for the wind speed and direction with root mean 
square error of 0.34 m/s and 7.8 rad, respectively.

With these performances, we can qualify the LSTM model for medium term fore-
casting of wind speed and direction. In the literature, forecasting is mostly very short 
or short term with Root Mean Square Error above 0.7 m/s with deep learning networks 
[36, 54–57]. As an example, we list in Table 6 the results found in some recent articles. It 
must be said that the forecast horizons, the datasets and the computers used are rarely 
the same. This makes it difficult to compare performances in terms of accuracy and com-
putation time. We can notice that for most of the proposed models for wind speed pre-
diction, despite a horizon up to 12 h, our proposed LSTM model remains more efficient.

Fig. 25 Validation output data

1 2 3 4 5 6 7 8 9 10 11 12

Wx -3 -3.5 -3.6 -2.7 -1.6 -1.4 -0.5 -0.15 -0.06 -0.27 -0.7 -1.2

Forecasted Wx -3 -3.2 -2.9 -2.3 -1.4 -0.5 0.1 0.37 0.2 -0.17 -0.5 -1.47
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Fig. 26 Validation target and forecasted Wx
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1 2 3 4 5 6 7 8 9 10 11 12

Wy 4.9 4.5 4.1 3.1 2.7 3.9 3.7 3 2.5 2.1 1.9 1.9

Forecasted Wy 5.1 4.7 4 3.4 3.3 3.5 3.4 3 2.4 1.9 1.5 1.4

0

1

2

3

4

5

6

Index

Wy Forecasted Wy
Fig. 27 Validation target and forecasted Wy

Table 4 Wx and Wy forecasting performance

Wx forecasting performance

RMSE 0.47 m/s

R2 86%

Wy forecasting performance

RMSE 0.33 m/s

R2 91%

Fig. 28 Target values of wind speed and direction
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Power output estimation of a wind turbine installed in sub‑area 56 from predicted speeds

From the predicted wind speed values and characteristics, we can now estimate 
future values of the power output using Eq.  (6). As an example, we make this 

1 2 3 4 5 6 7 8 9 10 11 12

Ws 5.82 5.74 5.49 4.21 3.2 4.24 3.81 3.09 2.56 2.2 2.11 2.31

Forecasted Ws 5.93 5.73 4.98 4.14 3.68 3.57 3.47 3.06 2.49 1.96 1.65 2.09
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Fig. 29 Validation target and forecasted wind speed

1 2 3 4 5 6 7 8 9 10 11 12

Wd 121.32 127.93 131.54 131.02 121.71 110.61 98.96 92.75 91.4 97.13 109.71 123.15
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Fig. 30 Validation target and forecasted wind direction

Table 5 Wind speed and wind direction forecasting performance

Wind speed forecasting performance

RMSE 0.34 m/s

R2 93%

Wind direction forecasting performance

RMSE 7.8 rad

R2 70%
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estimation on the 2  MW model of the manufacturer WindEnergy Lebanon whose 
characteristics are presented below:

– Power (kW) 2000
– Rated Power (kW) 2050
– Diameter (m) 88
– Cut-in speed (m/s) 3
– Cut-out speed (m/s) 25
– Rated speed (m/s) 12
– Maximum Cp 0.41
– Hub height (m) 80

Because the height of the wind turbine is 80 m and the data used for our predic-
tion were taken at a height of 50 m, we extrapolated the velocities to a height of 80 
with the logarithmic wind profile as defined below [63]:

The reference velocity v1 is measured at the reference height h1. v2 is the wind 
speed at height h2. z0 is the roughness length. We used a z0 value of 0.0024 m.

Figure 31 shows the power obtained for the 12 h forecasting with the three estima-
tion models.

(18)v2 = v1

ln
(
h2
z0

)

ln
(
h1
z0

)

Table 6 Performance comparison

Refs. Forecast type Method Forecast horizon Obtained accuracy

RMSE MAPE (%) R2

Yatiyana et al. [58] Wind speed ARIMA 6 h – 4.90 –

Wind direction – 15.60 –

Çevik et al. [59] Wind speed SWD-ANFIS, ANN 
and Ensemble 
methods

3 h 0.3842 m/s – –

Liu et al. [60] Wind speed ICEEMDAN-MMODA 3 h 0.35 m/s 5.02

Liu et al. [56] Wind speed Jaya-SVM 3 h 1.01 m/s 15.34 0.85

Duan et al. [57] Wind speed ICEEMDAN-GRU-
ARIMA

15 min 0.09 m/s 2.34

Neshat et al. [61] Wind speed ED-HGNDO-BiLSTM 1 h 1.57 m/s 0.91

Yun Wang et al. [36] Wind speed CNN 1 h 0.73 9.84 0.96

LSTM 0.77 10.51 0.95

Sheng-Xiang and 
Lin [62]

Wind speed HTD- MOBBSA- 
Seq2Seq

1 h 1.58 m/s

Our proposed model Wind speed LSTM 12 h 0.34 m/s 8.22 0.93

Wind direction 7.8 rad 6.09 0.70
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Conclusion
It is very important to be able to identify a favorable geographical site because of its 
characteristics when it comes to installing a wind generator. Also, when the generator 
is installed, it is necessary to have tools that can give an idea of how its output power 
will evolve given the stochastic character of the wind speed. The results of this work 
have shown that it is possible, based on artificial intelligence clustering techniques, 
to highlight the potential of wind power production at any point within a large geo-
graphical area and to delimit the periods of the year during which the production 
could be optimal. Moreover, these results led to the forecasting for 12 h of the wind 
speed and direction as well as of the output power of a wind generator by associating 
a time series forecasting model (LSTM) and an approximation model of the power 
curves of wind turbines. These results will be very useful for the identification of any 
potential site of installation of wind turbines for a country and the control in advance 
of the possible behavior of the wind turbine during all periods of the year.

Abbreviations
ANN    Artificial neural network
RMSE    Root mean square error
MAPE    Mean absolute percentage error
MSE    Mean square error
LSTM    Long short-term memory
ED-HGNDO-BiLSTMHybrid  Evolutionary decomposition generalized normal distribution of bidirectional long-

term memory model
CNN    Convolutional neural network
IHTSDS    Improved hybrid time series decomposition strategy
ANFIS    Artificial neuro-fuzzy inference system
SWD    Stationary wavelet decomposition
MMODA    Modified multi-objective dragonfly algorithm
ARIMA    Autoregressive integrated moving average
GRU     Gated recurrent unit
ICEEMDAN    Improved complete ensemble empirical mode decomposition with adaptive noise
RES    Renewable energy sources
SVM    Support vector machine
R2    Regression coefficient
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