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Introduction
Several major issues including climate change, water storage, and crop variability 
threaten Egypt’s agricultural sector [1]. Several factors, including soil erosion, water 
pollution, climate change, socio-cultural development, political laws, and market fluc-
tuations, contribute to food insecurity [2]. Low soil fertility, pest illnesses, a lack of tech-
nological adaptation, and unpredictable weather are only a few of the obstacles that 
must be overcome to increase agricultural productivity [3]. Data are becoming not just 
valuable but also smart in the digital age [4]. During the middle of 2011, the term "Big 
data" (BD) was used to characterize the massive amounts of varied data that are diffi-
cult to manage and handle with traditional methods. Technically, the five main dimen-
sions that characterize BD [5] are the massive amount of data, speed of data generation 
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and delivery, structured and unstructured multisources data, veracity, and value [6], 
as shown in Fig. 1. In [7], four use cases were discussed to relate BD five dimensions. 
Velocity and variety are key big data properties. Velocity is required in real-time deci-
sion-making. For example, a robot must select to pick a tomato. To make the proper 
decisions, robot sensors must process quickly. Combining data from different sources is 
defined as data diversity. Aquaculture monitoring which includes in-situ sensors, drone 
video, and feed management systems is an example of multimodal data. Volume is an 
important dimension in crop yield forecast use case. More space can be used for the 
forecast of organic soya production thanks to the processing of higher-resolution satel-
lite images. Veracity is important for use cases with uncertain data, such as weather or 
multisource data.

The utilized tools, storage techniques, data processing mechanisms and data security 
techniques are collectively called as big data paradigm [8]. Big data paradigm enables 
researchers to analyze a vast amount of data into different modern practices. BD para-
digm [9] involves four areas, namely methods, storage, processing, and representation. 
The approaches aim to uncover hidden trends and patterns within the multisource and 
large volumes of the acquired data. For both structured and unstructured data, the stor-
age provides management systems and tools at a reasonable price.

The design and implementation of different cloud-based platforms exploit the process-
ing capabilities to boost the overall performance. However, the main challenge lies in 
enhancing the data value and its accessibility for decision-makers. In Egypt, the recent 
governmental efforts have been directed to address the acquisition issues including 
cyber-infrastructure, automation and digitalization, data quality, integrity, reliability, and 
legal issues required in data collection, data access and usage and finally sharing and dis-
tribution of data. Several attempts for the private and public sectors had been focused 
on establishing BD cyber-infrastructures either individually or jointly. Recent research 
has concentrated on improving the government’s ability to develop an action plan to 
promote the agriculture industry by integrating information and conducting predictive 
analysis. BD analytics and remote sensing (RS) technology open the door to improve 
agricultural sector productivity by extracting insights from the collected data to help 
farmers manage their farms and make on-farm management decisions.

Recently, a few papers had investigated the adaptation of BD technology in Egyptian 
framing. In [4], the authors introduced  AgroSupportAnalytics, a cloud-based tool 

Fig. 1 The 5 main dimensions of big data after Fortune magazine
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for managing complaints and making sound farming decisions in Egypt, to help and 
advice farmers and the discrepancies of the current manual method by agricultural 
specialists. Developed an automated complaint management and decision support 
method based on Egypt-specific requirement analysis. The solution uses knowledge 
discovery and analysis on agricultural data and farmers’ concerns, deployed on a 
Cloud platform, to benefit Egyptian farmers. This article described  the overall sys-
tem architecture as well as the information and storage services based on the needs 
specification phases of the project and historical data sets of farmers’ complaints and 
questions in Egypt. In [10], wireless sensor networks, their use in precision farming, 
and their relevance for Egypt’s agriculture were discussed. By examining the use of 
a wireless sensor network in the cultivation of Egypt’s potato crop, it was clear  that 
the annual benefit from exporting the crop, after recovering the loss from its export 
prevention (estimated at 2 billion pounds, or the value of the potato export to Russia 
annually), after recovering the expected consequence of increasing the yield size and 
quality and after recovering the expected savings in the resource inputs, is greater 
than the cost of the system. The APTEEN protocol is the most ideal routing strategy 
for precision farming, and its network lifespan may reach 6.5 months, which is longer 
than the maximum potato crop lifetime of 120 days but shorter than the yearly cul-
tivation duration of 6 months in Egypt. In [3], the authors presented a BD-analytics-
based conceptual framework for Egyptian agriculture which could be applicable in 
monitoring, management, and forecasting.

In [11], a literature was introduced to assess smart farming to discover trends and 
opportunities using ProKnow-C methodology between 2015–2019 datasets and only 
2401 articles were selected. Bibliometric analysis of the articles yielded a bibliographic 
portfolio of 39 works. The authors reach four main conclusions: (i) the necessity for uni-
versal information models to implement smart agriculture; (ii) the creation of standard 
IoT platforms for agriculture; (iii) the design of IoT devices with sophisticated encryp-
tion; and (v) predicting outcomes while considering relevant agricultural elements. In 
[7], the authors examined the circumstances for adopting big data technology in agri-
culture by analyzing twelve real-world use cases in precision agriculture and livestock. 
They employed a mixed method approach in Horizon 2020 project CYBELE, ranging 
from precision arable and animal farming to fisheries and food security, and a 56-person 
stakeholder survey. Large-scale deployments necessitate multidisciplinary methods and 
long-term project timeframes to solve big data concerns and avoid agricultural science 
compartmentalization. After studying use case challenges, solutions, and stakeholder 
viewpoints from all four angles, the authors conclude that big data solutions adoption 
is still small. These reviews indicate that even in developed countries the adaptation of 
BD in agriculture sector still in early stages. This research indicates the need to transfer 
technology and experience to the underdeveloped countries to integrate BD analytics in 
farming sector.

This paper introduces a systematic review of BD in agriculture applications to answer 
three questions. The first question highlights the rising tide of BD modeling and manage-
ment publications. The second question manifests the trending topics while the last one 
identifies gaps present based on three key concepts, data source, modeling, and data-
base. To better understand how to address the issues plaguing the Egyptian agricultural 
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sector, we also go over the structure of modern computing systems that store and pro-
cess large amounts of data. Finally, challenges and further directions were highlighted.

The rest of this paper is organized as follow: Section II identifies Systematic Literature 
Review (SLR) methodology utilized in this study. Sections III briefly discusses non spa-
tial and spatial big data frameworks. Section V discusses the major data sources incor-
porated in BD analytics. Section VI presents discussion. Finally, Section VII concludes 
the paper and provides future trends.

Systematic literature review (SLR) methodology
We selected the SLR as our research methodology. The key objective is to investigate and 
provide an extensive review of the existing BD analytics, applications, processing frame-
works, and protocols related to the agriculture field. We followed the methodology in 
[12–14] to impartially select information and represent the results. The research meth-
odology illustrated in Fig. 2 can be summarized into three phases: (1) review planning, 
(2) conducting the review, and (3) findings and reporting.

Research objectives

The main research objectives include:
O1: Defining cutting-edge research in BD field in agriculture.
O2: Characterization of the prevailing BD agriculture implementations, processing 

frameworks, as well as protocols.
O3: Identification of suggested taxonomy and supplementary highlights methods and 

approaches utilized in agriculture.
O4: Identification of gaps in research in the context of challenges and open issues.

Fig. 2 The adopted SLR methodology
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Research questions

Defining the Research Questions (RQs) is the primary step in the SLR process. This 
research addressed three main questions with their respective motivation, as displayed 
in Table 1.

Search string

Next, we performed a pilot search on the basis of "BD in agriculture." Then, we per-
formed a search on a wide range of keywords (Table 2) using multiple search engines and 
digital libraries. We chose SpringerLink, IEEE, MDPI, and ScienceDirect digital libraries 
due to their related scientific content to the paper objectives. Finally, we set up appropri-
ate technical and scientific procedures to search in the aforementioned digital libraries.

Screening of relevant papers

We screened the papers to remove the irrelevant papers to the research questions. How-
ever, another detailed assessment to indicate the actual relevancy was carried out. First, 
we selected papers based only on the titles and excluded other papers irrelevant to the 
research questions. Next, a second screening round via reading each abstract was car-
ried out to shortlist papers based on the following parameters.

Articles novelty.
Papers published other than conferences, journals.
Articles defining unclear data sources or data collection procedures.
Papers published between 2010 and 2020.

Table 1 Research questions

No Research question Motivation

RQ1 What are the trend in peer-reviewed papers in 
the field of business development modeling and 
management?

Identify the recent development in BD frameworks 
utilizing ML and DL to boost smart agriculture. 
Define the challenges of applying modern technolo-
gies in Egypt

RQ2 What approaches were widely used especially in 
underdeveloped countries?

This question focuses on characterizing the current 
priorities in BD applications as well as the develop-
ment throughout the past years

RQ3 What is the current gap in terms of data sources, 
modeling, and analytic methods?

Reporting the recent software, tools, technology, and 
data sources actively facilitate the shift to a smart 
agriculture environment to tackle the drawbacks of 
the Egyptian agriculture practice

Table 2 Search string

Sources Search String Context

IEEE Xplore, ScienceDirect, SpringerLink, and 
MDPI

(“Big Data”) AND (“Big data agricultural”), 
(“Egypt”) or (“Egyptian") (“Big Data”) AND (“Smart 
Farming”)AND (“precision agriculture”), OR( 
“Deep Learning”), (“Machine Learning") OR (“Agri-
culture supply-chain process”)

Agriculture
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Quality assessment

We carried out a Quality Assessment (QA) questionnaire to evaluate each of the selected 
articles’ quality quantitatively. In this SLR, a simple questionnaire based on [12] was 
designed to investigate the quantitative value of the selected papers’ quality.

SLR QA questionnaire Grading

(a) The paper introduces a novel idea to BD in agriculture Yes (1) and No (0)

(b) The paper exemplifies a clear data sources and processing 
chain in the field of agriculture

“Yes (1)”, “partially (0.5)”, and “No (0)”

(c) Number of citations. Please state the number of citations -No recorded citation (− 1),
-citation count between 1 and 5 (0),
-citation count is over 5 (+ 1)

(d) Is the paper published in Quartile journal ranking
Q1, Q2 (0.1), Q3, Q4(0.5)

(e) Is the paper answer the main research question Yes (+ 1), No (0), please state the Question No.)

Selection process

Table 3 provides a quick summary of how many papers were chosen after a thorough 
search and selection procedure. Initially, 11,596 papers were chosen by the search pro-
tocol on the selected databases. The authors were split into two teams to conduct the 
above screening to exclude non-related articles based on titles, abstracts, keywords, and 
full articles. Next, duplicate elimination reduced the total relevant paper. In the end, the 
authors only select 242 out of 11,596 based on their abstracts and full paper scanning.

BD frameworks
Many studies compare the popular BD frameworks [15–18]. In this context we briefly 
discussed traditional DB, spatial BD frameworks and major BD sources.

Non‑spatial BD frameworks

Several studies compare BD frameworks [3, 19] whose categorized into batch, stream, 
and hybrid [20] based on the data they handle. Unfortunately, the factors considered in 
comparing frameworks from the same category were hardly mentioned. An extensive 
comparison was conducted using the same approach [20] and considering the follow-
ing aspects: computing cluster architecture, data flow, data processing model, scalability, 
fault tolerance, back-pressure mechanism, latency, and programming languages, beside 
ML-related libraries.

Table 3 Total numbers of papers through the selection process

Process Selection criteria IEEE Xplore Springer ScienceDirect MDPI Total

Search Keywords 3145 779 5000 2672 11,596

Screening Duplicate removal 237 198 381 567 1383

Screening Title 235 181 261 208 885

Screening Abstract 201 60 58 103 422

Inspection Full paper 162 20 48 12 242
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Batch BD frameworks

To process the data in a batch, it required to accumulate for several hours or even days. 
In order to process the information, the data had to be loaded into memory. Other-
wise, it would have been kept in a different location, such as a database or a file system. 
Hadoop MapReduce and Spark are instances of batch BD frameworks for massive data-
sets. Informatica and Alteryx are two popular data-analysis tools for organizations of all 
sizes. Database management systems like Amazon Redshift and Google BigQuery are 
used for relational data.

Google unveiled the Hadoop framework [21], which includes the Hadoop Distributed 
File System (HDFS), Yet Another Resource Negotiator (YARN), and MapReduce. HDFS 
is the heart of Hadoop, and it’s what makes Hadoop so useful for dependable data stor-
age. NameNode and DataNode are HDFS’s two designs, and YARN is the cluster man-
agement part of the Hadoop framework.

In conclusion, the MapReduce component has two primary operations: mapping and 
reducing. Users need just define map and reduce functions, with the framework han-
dling administrative tasks including parallelization and failover. Hadoop MapReduce, in 
general, uses HDFS for data storage and YARN for managing resources and scheduling 
jobs. The overall structure of the Hadoop components [22] is displayed in Fig. 3.

Stream BD frameworks
Via stream frameworks, the data is processed in real time or in micro-batches [23]. A 
bunch of popular BD stream frameworks include Apache Storm and Apache Samza [20].

Apache storm

Twitter created Apache Storm to process huge, real-time structured and unstruc-
tured data [24–26]. A typical Apache storm topology [27] (Fig. 4) uses a directed acy-
clic network where edges represent data interchange and nodes represent computation 

output

Input data

Shuffle  and sor�ng  are 
performed in this stage

Fig. 3 Hadoop MapReduce overall structure [22]
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resources. Nodes are master "Nimbus" or worker "Supervisor." Every node accepted 
streams (sequence of Tuples). First nodes only take Spouts, which can convert external 
messages to tuples and resend them without calculation. Bolts filter, calculate, join, and 
produce tuples. Stream grouping defines the bolt-to-spout protocol.

Figure 5 shows the Storm architecture [28] which consists of Nimbus, Supervisor, and 
ZooKeeper. Nimbus monitors worker and slave node progress and assigns tasks. Super-
visor is a stateless daemon that monitors and restores topologies [28]. ZooKeeper man-
ages configuration, synchronization, and group membership. Topology uses Trident 

External 
Sources

Spout

Spout

Bolt A

Bolt A

Bolt A Bolt B

Bolt B Bolt C

Bolt B

Fig. 4 Apache Storm Topology [27]

Fig. 5 Apache Storm Architecture [28]
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APIs, which offer high-level operators. Trident APIs Trident APIs divide work into 
micro-batches. Controlling throughput and delay with batch size. As directed acyclic 
graphs (DAGs), their topologies cannot run iterative algorithms [29].

Apache Samza

Apache Samza was created by LinkedIn to solve problems in stream processing, such as 
scalability, resource allocation, etc. [30]. Samza is built on Kafka and YARN [20, 31]. Fig-
ure 6 shows Apache Kafka’s five primary components. Producer, Topics, Consumer, Par-
titions, Brokers. Producer writes Kafka topics. Topic describes every Kafka data stream. 
A consumer can read Kafka topics and must retain its failure offset. Brokers are Kafka’s 
single nodes.

Hybrid BD frameworks
Batch and stream processing frameworks are needed for some applications. As a result, 
the utilization of hybrid processing frameworks is essential in these circumstances. 
Some of the most prominent examples include Apache Spark and Apache Flink.

Apache spark

Apache Spark is a Hadoop-based hybrid framework that boosts batch processing with 
fully in-memory computation [20]. The two cases for which the Apache Spark restricted 
storage layer is relevant are data loading into memory and result storage. Spark caches 
intermediate results, unlike Apache MapReduce. Apache Spark’s central data structure, 
Resilient Distributed Datasets (RDDs), enables developers to reuse intermediate data. 
RDDs can optimize partitions and maintain stored data [17].

Apache Spark framework [33] comprises numerous core components and upper-
level libraries, such as Spark’s MLlib for machine learning [34], GraphX [35] for stream 
processing, and Spark SQL for stream processing and structured data processing [36]. 

Samza Job

Ka�a 
Topic 1

Ka�a 
Topic 2

Ka�a 
Topic 3

Machine 

KAFKA

YAEN NodeManager

Samza Container 

Task Task

Task

YAEN NodeManager

Fig. 6 Apache Samza Architecture [32]
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Figure 7 depicts Apache Spark stack [37]. Scala-based Spark enables multiclusters. Spark 
supports Scala, Java, Python, and R and data visualization and analysis methods. Cluster 
managers request job-execution cluster resources. Spark’s built-in cluster manager uses 
Hadoop YARN, Apache Mesos, and Amazon EC2. Spark supports HDFS, Cassandra, 
HBase, Hive, Alluxio, and other data sources.

Apache Flink

Real-time analytics, continuous data pipelines, batch processing, and iterative algorithms 
are all supported by Apache Flink [38], an open-source hybrid framework. The key ben-
efit is great fault tolerance and low latency costs while processing massive amounts of 
data in a distributed setting. For limited data sets, the DataSet API is a common method 
of processing data in batches [38]. Figure 8 illustrates Apache Flink Ecosystem.

Spatial BD frameworks

GIS supports various activities for government especially in active sector like agricul-
ture. Many BD processing frameworks, such as Hadoop MapReduce, were invented to 
process and analyze huge GIS data in order to extract geographic information for spe-
cific geographic operations such as distance-based queries, k-nearest neighbor (KNN) 
searches, filter-based queries, etc.

Hadoop‑based

This section discusses the two most prevalent Hadoop MapReduce dependent on GIS 
data processing frameworks: Hadoop-GIS as well as Spatial-Hadoop.
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Hadoop‑GIS

Hadoop-GIS is a MapReduce framework for handling massive amounts of vector 
data, partitioning, and geographic queries [39]. There is a wide variety of geographi-
cal (spatial) questions, including: distance-based queries; relationship-based queries; 
descriptive queries; and distance-based spatial mining and statistics queries, such as 
spatial clustering and spatial regression [35]. Hadoop-GIS uses SATO spatial par-
titioning and local spatial indexing to improve query speed. However, complicated 
geometries are not allowed. This includes things like convex/concave polygons, line 
strings, multipoint geometries, and multipolygon geometries. Hadoop-GIS, in fact, 
only works with two-dimensional data and provides support for two types of queries 
over geometric objects: box range and spatial joins.

Spatial‑Hadoop

To address the shortcomings of Hadoop-GIS, the Spatial-Hadoop MapReduce archi-
tecture was developed. It includes SpatialRecordReader and SpatialFileSplitter, two 
new components for processing spatial data efficiently and scalable with spatial data, 
geographic indexes, and operations [40].

Points, multipoints, line strings, and polygons are just some of the geometry types 
that can be used with Spatial-Hadoop. Uniform grids, R-Trees, Quad-Trees, KD-
Trees, and Hilbert curves are some of the spatial partitioning techniques used in spa-
tial indexes [41]. It also allows for numerous predefined spatial operations like range 
queries, k-nearest neighbor queries, and spatial joins. In addition to skylines, convex 
hulls can also be generated from the many geometric objects it supports, such as seg-
ments and polygons. Spatial-Hadoop, a distributed platform for geospatial data ana-
lytics, is what makes the aforementioned features a reality.
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Cloud 
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Fig. 8 The Apache Flink Ecosystem [38]
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Spark‑based

This section introduced two of the most widespread Spark-based GIS data processing 
frameworks: Spatial-Spark and Geo-Spark.

Spatial‑spark

In order to process geographic information system (GIS) data, the framework known as 
"Spatial-Spark" was developed. It was built atop Spark RDD to supply a wide variety of 
spatial operations like range query, spatial join, spatial filtering, R-Tree index, and R-Tree 
partitioning to speed up queries [42]. To handle both broadcast spatial join and parti-
tioned spatial join, Spatial-Spark can be thought of as an in-memory BD framework [42].

Geo‑spark

To analyze massive amounts of GIS data more quickly than Spatial-Hadoop, an in-
memory cluster computing framework called Geo-Spark has been developed on top of 
Spark [43]. To better accommodate spatial data types, indexes, and geometric operations 
at scale, Geo-Spark broadens the idea of RDDs and SparkSQL. It’s useful for k-nearest 
neighbor (KNN) queries and other geographic data partitioning systems like a uniform 
grid, R-Tree, Quad-Tree, or KDB-Tree. To find a happy medium in a cluster between 
execution time and memory/processor consumption, Geo-Spark is calibrated to pick 
an appropriate join algorithm [44]. By combining operationally fast programming lan-
guages (like Java and Scala) with declarative (like SQL) languages and spatial RDD APIs, 
Apache Spark’s Geo-Spark enables developers to create effective spatial analysis applica-
tions. Finally, Tables  4 and 5 draw a comparison among the discussed BD processing 
frameworks either Non-Spatial or Spatial DB Framework, including different metrics.

Common data sources
To the best of our knowledge, satellite imagery, Wireless Sensor Web (WSW) and Inter-
net of Things (IoT), crowdsourcing, Social Media records, GPS traces and mobile call 
detail record, simulation, Unmanned Aerial Vehicle (UAV) video, Airborne and Terres-
trial Light Detection and Ranging (LiDAR), and Geographic Information System (GIS) 
are all common BD sources in agricultural applications (GIS).

Table 4 Comparison among popular Non-spatial DB Framework

Features Hadoop Spark

Processing type Batch Hybrid

Computing cluster architecture YARN YARN and Mesos

Data Flow MapReduce data flow A queue of RDDs called DStream pro-
cessed one at-a-time using microbatching 
cluster

Data Processing Model MapReduce exactly-once

Fault Tolerance Yes Yes (using lineage)

Latency low High

Scalability Yes Yes (user demand)

Back-pressure Mechanism No Yes

Programming Languages Java mostly API for Scala, Java, Python, and R

Support for Machine Learning Yes Yes (Spark MLlib)
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Satellite imagery

To investigate the planet’s surface, satellites use either active or passive sensors to gather 
imagery of it [23]. Images captured by passive sensors are used to calculate how much 
sunlight is reflected from Earth’s surface. In contrast, active sensors are typically used 
to acquire the images. Active sensors, such as the Synthetic Aperture Radar (SAR), are 
effectively used to address the shortcomings of passive sensors and expand the obser-
vational capacity for agricultural applications when there is thick cloud cover, rain, or 
when it is nighttime.

Wireless sensor web and IoT

In a Wireless Sensor Network (WSN), a wide variety of high-tech sensors, such as those 
that measure temperature, humidity, wind speed and direction, etc., are networked 
together. For better identification and visualization across various agricultural regions, 
WSN relies on Internet of Things (IoT) technology, which integrates and deploys a num-
ber of heterogeneous geographically distributed sensors [45]. When conventional lines 
of communication breakdown, the gathered data [46] may help farmers, specialists, 
and investors keep a tighter rein on day-to-day operations. Although WSNs have many 
applications in smart farming, they still lack the "Socio-techno-economic viewpoint" 
required for full coordination between the various data sources and protocol implemen-
tations [47].

Crowd‑sourcing and social media

A number of tools have emerged in recent years to facilitate the gathering of informa-
tion from the general public. Crowdsourcing is an example of an active platform, where 
contributors are aware of the data collecting [48], while social media is an example of 
a passive platform, where contributors are unaware [49–51]. For pest monitoring and 
information exchange, social media has largely replaced crowdsourcing systems [52].

Data collection [52], information extraction, analytical workflow, geo-location pattern/
image/text analytics, and information sharing via social media services are all used in 

Table 5 Comparison among popular Spatial DB Framework

Features Hadoop‑GIS Spatial‑Hadoop Spatial‑Spark Geo‑Spark

DataFrame API No No No Yes

In-memory processing No No Yes Yes

Spatial Partitioning SATO Multiple Multiple Multiple

Spatial Indexing R-Tree R-/Quad-Tree R-Tree R-/Quad-Tree

KNN query Yes Yes No Yes

Query optimizer No No No Yes

Distance query Yes Yes Yes Yes

Distance join Yes Yes Yes Yes

Filter (Contains) Yes Yes Yes Yes

Filter (ContainedBy) Yes Yes Yes No

Filter (Intersects) Yes Yes Yes Yes

Filter (WithinDistance) Yes Yes Yes No
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agricultural growth [44]. Real-time analytics based on social media platforms [53] offer 
a lot of opportunities for automatic monitoring and detection of plant diseases, crop 
yields, and predictions [54]. Simplifying spatiotemporal analysis and generating a spa-
tial-based choice for supporting environment, visual analytics can aid small farmers in 
meeting consumer demand using social media data. Text messages are important, but 
the movies and pictures that users upload are what really make social media what it is. 
Analyses that rely on images and videos, as well as visual analytics, mine social media 
posts for relevant data [55].

Mobile call detail record (CDRs) and GPS traces

When it comes to managing natural disasters like landslide monitoring, tsunami moni-
toring, earthquake management, forest fires, and floods, GPS traces and mobile CDRs 
data are essential resources. The data from GPS logs have proven useful in a variety 
of farming applications [56], such as determining patterns of agricultural machinery’s 
mobility and tracking fuel use.

Simulation

One of the most important agricultural contributions to meteorological phenom-
ena, land surface phenomena, and other types of pollution is numerical modeling, also 
known as forecasting [57, 58]. Water spray [59] and subsurface pipe parameter [60] esti-
mates have also benefited from mechanistic modeling.

Management in agriculture can be improved with the use of various modeling and 
simulation techniques. As a result of the need to better comprehend the physical, 
chemical, and biological control parameters in crop and animal production systems, 
several mechanistic models were developed to enhance the scientific understanding of 
agriculture. The second set of simulation models was designed to aid in planning and 
decision-making.

UAVS, Drones, and LiDAR

Drones and other Unmanned Aerial Vehicles (UAVs) can provide high-resolution 
imagery useful for a wide range of agricultural applications [61] including livestock 
monitoring, crop production, yield prediction, fertilizer and pesticide spraying, and soil 
mapping [62]. A UAV or drone can be outfitted with a wide variety of sensors, includ-
ing cameras, LiDAR, and even weather detectors. Many applications, such as pesticide 
spraying by drone, plant phenotyping, and yield production estimation, can benefit from 
incorporating the collected sensor data into real-time decision making [63].

LiDAR technology [64] allows for the generation of accurate topography maps and 
Digital Elevation Models (DEMs), both of which are used extensively in analyses of crop 
architectural factors, forests, and other agricultural settings. Yield prediction and moni-
toring, soil type identification, soil erosion estimation and prevention, land parceling, 
and crop analysis field management are all areas where LiDAR has proven useful [65]. 
The geospatial community places a high value on LiDAR technology due to the vast 
amounts of data it generates [66].
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Vector‑based GIS data

Geographical Information System (GIS) comprises computer hardware, software, in 
addition to various methods. Its utilization lies in collecting, managing, processing, 
analyzing, modeling, and displaying spatial data for solving multifaceted management 
and planning issues. Vector-based GIS data is a powerful addition to agriculture control 
systems [67] like farmland suitability analysis, figuring out how much fertilizer to use, 
and figuring out how much pesticide to use. Critical facility geospatial analysis (hospi-
tals, schools, fire stations, etc.) [68], human impact assessment (based on age, gender, 
socioeconomic status, etc.), resource inventory (vehicles, supplies, equipment, etc.), and 
infrastructure assessment (location of buildings, roads, and utilities) (utility grids and 
transport networks) assist and strengthen the agricultural community [67].

To determine whether or not land is suitable for irrigation with reclaimed water, in 
[67] the authors created a methodology that combined multicriteria decision analysis 
with geographical information data (GIS-MCDA). With the use of Geographic Infor-
mation Systems (GIS), in [69] the authors investigated the ideal soil-site characteristics 
for citrus to maximize yield. Satellite images, aerial photography and video from UAVs, 
Wireless Sensor Web and IoT, simulation, crowdsourcing, social media records, GPS 
traces and CDRs, LiDAR, and GIS data are all examples of BD sources mentioned above.

Discussion
To indicate the main trend among the 242 papers that have been analyzed, Fig.  9 
demonstrates a consistently increasing trend in BD’s popularity in the agriculture set-
ting since 2014. Following the assessment of publications in the last few years, it indi-
cated that those BD frameworks chosen in the early years were based on Hadoop and 
MapReduce. An increasing trend in the use and integration of Hadoop began around 
2018. The papers reviewed in this work were published in 34 different journals over 
the four digital libraries indicating a broad paradigm of disciplines using BD engi-
neering in agriculture and food security studies. Out of these, 23 journals published 
only one paper for BD with various agriculture practice applications. Journals such 
as Precision Agriculture, Computers and Electronics in Agriculture, and IEEE Access 
are where the most up-to-date and reliable information on biotechnology (BD useful-
ness) in the agricultural sector can be found.

According to the three RQs, the distribution of the 242 peer-reviewed stud-
ies is illustrated in Fig.  10 Overall, one can report that 46 articles were published 
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Fig. 9 The trend of selected published articles in agriculture between 2010 and 2020
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motivated by RQ1. Only about 30 studies applied machine or deep learning in agri-
culture practice. Finally, 164 articles focused on new and trendy technologies in pre-
cision agriculture.

Figure 11 demonstrates the number of published papers per technology adopted, 
and it indicates that the largest number of papers utilized Internet of Things (IoT) 
(57). This was followed by a considerable number of studies adopted the RS data, 
including satellite images, optical or radar datasets, and photogrammetry (37). Stud-
ies focused on wireless sensors, collected field data, and Cloud Support System was 
26, 20, and 12, respectively. Other data sources include The Unmanned Aerial Vehi-
cle (UAV) (9) and Lidar data (3), respectively. Multidata sources were investigated in 
different studies in this context.

Figure  12 indicates the publication trends over the last ten years for each of the 
adopted technologies in 242 articles. It can be noted that there is a rapid shift in 
trend with the popularity of BD since 2014. In the light of research published over 
the past few years, it was clear that early researchers relied on more than just sat-
ellite data. After Sentinel-1 becomes widely accessible in 2017, a rising trend is 
observed toward combining radar and optical data. Over the past three years, we’ve 
seen a change in how widely technology like UAVs, Lidar, and wireless sensors can 
be used. Although cloud computing shows much promise, just a fraction of the data 
used in existing studies comes from the cloud.

Research 

Ques�on 1, 46

Research 

Ques�on 2, 30

Research 

Ques�on 3, 164

Research Ques�on 1 Research Ques�on 2 Research Ques�on 3

Fig. 10 The distribution of researches according to the three questions in last ten years

Fig. 11 The number of papers per technology adopted
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Conclusion
New findings in BD agriculture and farming were analyzed in this study. While BD ana-
lytics has the potential to aid the Egyptian agriculture sector in resolving a number of 
difficulties, doing so will necessitate a significant financial commitment. Egypt’s farmers 
couldn’t solve its food crisis without access to cutting-edge technology. This article sum-
marizes the findings from a systematic assessment of 242 papers on BD in agriculture, 
demonstrating the relevance of this research to the field’s challenges. As a result, there 
are numerous inferences that might be made:

Scientists are able to find solutions to farming issues with the aid of BD, free satellite 
imageries, massive computing capacity, and efficient machine learning approaches. 
In particular, the IoT (57), followed by RS Data (37) and WSW (26) were the top-
three BD sources studies in the past few years.
Since 2017, there has been a dramatic growth in the number of farming operations 
that make use of the Internet of Things. Specifically, 2017 had seen the publication of 
27% of the evaluated papers, 2018 saw 40%, and 2019 will see 44%. The rapid growth 
of Internet of Things used in farming is evidence of its usefulness and widespread 
adoption.
BD expanded on a wider variety of applications, including in the agricultural sec-
tor; the articles under examination appeared in 34 scholarly journals covering a wide 
range of disciplines.
37% of the articles cited the use of satellite imagery, most notably Landsat and Senti-
nel-2, to create several popular vegetation indices and land cover maps.
Numerous research used various machine learning techniques to handle RS data. 
Several research in the past few years have used deep learning, particularly in the 
fields of crop mapping and pest and disease identification.

Looking ahead, we aim to conduct additional in-depth research into the privacy, secu-
rity, and consistency issues facing farm data suppliers. Recent government initiatives 
have highlighted the importance of investing in cyber-infrastructure and cloud-based 

Fig. 12 The number of published studies utilizing technologies in precision agriculture per year
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computing. Future research must pay close attention to the issue of privacy because of 
its relevance to the field of agriculture.
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