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Introduction
One of the significant problems in distribution networks is the inappropriateness of the 
voltage profile. The effect of DG units on voltage regulation can be positive or nega-
tive. This may depend on the distribution system, characteristics of DG units, and their 
installation location. As voltage quality is one of the most important yardsticks in terms 
of power quality in the provision of services by electricity companies, in recent years, 
with the presence of DG units in distribution networks, great attention has been paid 
to the effect of these units on the voltage. Moreover, in the distribution systems, loss 
reduction is of the topics always considered. In [1], the optimal placement and sizing 
of DGs in distribution networks are considered with a new concept to simultaneously 
minimize the total energy cost along with the total energy loss and average voltage drop. 

Abstract 

During the past decade, the effect of renewable and non-renewable Distributed Gen-
eration (DG) sources of production has grown all over the world. Also, it has enhanced 
by national and international policies aimed at increasing the share of renewable 
energy sources and combining small high efficient heat and power plants to reduce 
greenhouse gas emissions, and global warming have been encouraged. Although the 
installation and operation of DGs have discussed for solving network problems in dis-
tribution networks, the fact is that in most cases, Distribution System Operator has no 
control or influence over DG placement and size. In this article, a meta-heuristic algo-
rithm for management and decision-making for optimal selection is presented, and in 
choosing the optimal solution, the impact factor is suggested in the best case. Inap-
propriate DG placement may increase system losses, network investment, and operat-
ing costs. This paper determined the optimal capacity and placement of photovoltaic 
sources to reduce losses, improve the voltage profile, and increase the active power to 
reactive power lines in MATLAB software by the second version of the genetically engi-
neered algorithm with unstable Non-dominated Sorting Genetic Algorithm (NSGA-II).
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In [2], Improvements to the existing multi-objective for PV measuring and site loca-
tion in radial distribution systems are presented based on reducing power loss and node 
voltage limiting deviation. In [3], the optimal size and placement of shunt capacitors are 
modeled in order to minimize line loss. The derivative load bus voltage has calculated to 
determine the sensitive load buses which further being optimum with the placement of 
the shunt capacitor. A new mathematical optimization algorithm for maximizing Host-
ing capacity (HC) by continuous network reconfiguration and placement of open points 
is proposed [4]. The optimal placement and sizing of DSTATCOM are investigated by 
considering different residential, commercial and industrial loads in [5]. The placement 
and sizing of a distribution solar photovoltaic plant (DSPP) are presented using his-
torical time series historical climatic data [6]. The combined Ant Colony Optimization 
(ACO) configuration with an artificial bee colony algorithm called the ACO-ABC hybrid 
algorithm for optimal location and measurement of distributed energy sources (DER) is 
presented in [7]. In [8], a comparison between nonlinear optimization and genetic algo-
rithms for the optimal location and the size of the distributed generation in a distribu-
tion network is presented and shows the importance of installing the right amount of 
DG in the best place. In [9], an improved malfunction sorting genetic algorithm is pro-
posed to optimize the scheduling of several DG units. Three evolutionary algorithms 
for fog service placement have been compared in [10], the weighted genetic algorithm 
(WGA), (NSGA-II), and the decomposition-based multi-objective evolutionary algo-
rithm (MOEA/D). In [11], genetic algorithm (GA) and ACO optimization techniques 
have proposed to find the optimal size and location for distributed generation in elec-
trical networks. In [12], the AC multi-temporal alternating current (AC) algorithm has 
been presented to uses the convex relaxation of current equations to ensure accurate 
and optimal solutions with high algorithmic performance. In [13], for placement and 
sizing with appropriate height, maximum cosmic ray detection, and comparison have 
used of atmospheric and solar radiation parameters. A reactive power source allocation 
strategy have proposed in [14], which distinctive feature of this strategy is that, by con-
sidering the control scheme in the allocation process, the optimal allocation achieved in 
a dynamic context. The optimal location and size of DGs in radial distribution networks 
have been analyzed using a master–slave hybrid meta-innovative method [15]. In [16], a 
collectible formula has been developed for the optimal placement and measurement by 
inverter-based renewable systems in multiphase distribution networks. A new metacog-
nitive algorithm in [17] is proposed, the Crow Search Algorithm (CSA) for calculating 
the optimal size and placement of PV units to diminish power loss and improve voltage 
characteristics. To optimally measure the energy storage system in a microgrid, deter-
mining the size and location of energy storage systems has been proposed along with a 
new method based on cost–benefit analysis [18]. The Whale Optimization Algorithm 
(WOA) is a new meta-heuristic algorithm for determining the optimal size of DG. This 
algorithm gives better results when combined with the voltage sensitivity index method 
[19]. In [20], a two-phase method is proposed to maximize the penetration of DGs in 
accordance with mass grid constraints such as voltage harmonics and relay coordination 
constraints by inverter-based distributed generations (IDGs) and synchronous distrib-
uted generations (SDGs), respectively. In [21], a review is provided of the placement, 
sizing, and optimum performance ESS. In [22], a hybrid approach to solve the problem 
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allocation of protection devices in the power distribution system offers. An improved 
method for solving the locating problem and measuring posts in [23] is presented based 
on geographic information and supervised learning. In fact, in a distribution network, 
the power loss curve with a power generation change in a particular placement on a net-
work is similar to a quadratic function. Given that, I is the line current, R is the line 
resistance, and S is the surface power of the line, the line losses are directly related to 
RI2, and I has a direct relation with S. Thus, if DG production capacity increases in each 
node from the distribution network, the total system losses will be reduced. Further-
more, with the further increase in DG production, network losses again start to increase. 
The displacement loss curve is displayed by changing the capacity of the installed DGs. 
As can be seen, PDG2 capacity is the optimum rate of DG production to reduce losses. 
It can also be stated that the shaft voltage profile has a linear relationship with power 
generation changes in a specific placement so that as the power output from a DG in a 
particular shaft increases, the voltage of all shins (A bar or a conductor called a bus bar) 
also increases.

Materials and methods
Evolutionary algorithms are a collection of modern discoveries that have succeeded in 
many applications of great complexity. This success in solving difficult motor drive prob-
lems is known as Evolutionary Computation (EC). Optimal placement and sizing, mini-
mizing the losses, bus voltage profile stability, and improvement of power quality and 
reliability of feed are considered as the fitness functions for the placement of the optimal 
sizing of this research work. The following power loss curve according to DG capacity 
change for system evaluation is shown in Fig. 1. The proposed method is presented on 
IEEE 33 and 69-buses DS. The IEEE 33-buses test system is depicted in Fig. 2.

Index of lines loss

Power losses in a distribution network depend on factors such as the resistance of dis-
tribution lines, the losses transformer core, and the engine. The ratio of dielectric and 
rotary losses to the losses lines is very small, so in this study, only the type of lines losses 
has been considered. The combined power of Sij is from node I to node j, and Sji from 
node j to node i.

Fig. 1  Power loss curve according to DG capacity change [2]
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In Eqs. (1) and (2) [4], Vi and Vj, respectively, are the voltages of i and j nodes. The 
current of the line Iij is the current measured in the direct direction from the shin i to 
j and the current of the line Iji is measured in the direct direction from j to i. There-
fore, the power losses in each line between the shins i and j can be written as the alge-
braic sum of the relations (1) and (2) in the form (3):

After each load transfer, the power losses per line can be obtained using Eqs. (1–3) 
[4], and by calculating the losses of all lines, the power losses of the entire network are 
obtained by Eq. (4).

In Eq. (4), total loss of the network losses and n is the number of network lines. Ii 
and Ri are the current magnitude and resistance corresponding to the circuit branch.

Shins voltage profile index

The system voltage profile index is also defined as follows:

where Vi is the i0th voltage in the distribution network based on Perionite and m is the 
number of network shins. It should be noted that in simulating typical systems, the shaft 
voltage is calculated in terms of a Perionite based on 12.66 kV.

(1)Sij = ViI
∗
ij

(2)Sji = VjI
∗
ji

(3)SLij = Sij + Sji

(4)Power Loss =

n
∑
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Fig. 2  The IEEE 33-bus DS
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Index of line capacity

Index or third purpose the optimization in this paper is the ratio of active power to 
reactive network lines, which is called the capacity occupancy index. This goal should 
be maximized and defined as follows [6]:

where Pj is the active power passing through j-th line, Qj is the reactive power of the j 
line and k is the number of network lines.

Objective function

The objective function considered determining the optimal placement and capacity 
of PV sources in the distribution network is in the form of Eq. (8) combination of the 
three indicators or the above objective:

Discussion
Constraints and of the problem

The constraints for placement and allocation of PV units in the distribution network 
are:

•	 Shine voltage constraint

Network bush voltage must be within the allowed range.

In this equation, Vi is the value of the voltage of each shin, and V_i^Min and 
V_i^Max, respectively, are the lowest and the maximum permissible voltage for the 
shins. In this paper, these values are considered to be ± 10% nominal voltages.

•	 Photovoltaic sources output power constraint

For the output power of PV sources, a maximum value is considered. In this paper, 
the maximum value for this purpose is equal to 4 MW.

•	 The limitations of the number of PV sources

In this paper, for the number of PV sources studied in each distribution network 
33 and 69 bus, the limit is 0 < nPV < 5. In other words, the maximum number of pho-
tovoltaic sources is set to 5. The current chart of the NSGA-II algorithm is shown in 
Fig. 3. In addition, the IEEE 69-buses system is shown in Fig. 4 This method is spe-
cial for radial distribution networks. In this method, the grid-solving continues from 
one line to the next systematically, so that all lines in the grid are computed. First, 
the voltage at all nodes, except for the reference node (whose size and phase it turns 
out to be), is assumed to be equal to the base voltage value. Based on these voltages 

(7)PQR =

k
∑

j=1

(

Pj

Qj

)

(8)Objective Function =
{

Power Loss, Voltage Profile, Cost
}

(9)VMin
i ≤ Vi ≤ VMax

i
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and the voltage-dependent dependence, the active and reactive power voltages of the 
nodes are we consider the following relationships:

(10)Pi = Psch
i

(

|V |calculatei

V base
i

)α
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Fig. 3  Proposed flowchart design compatible with NSGA-II algorithm

Fig. 4  IEEE 69-bus distribution system
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In the above equations [8], the values of α and β are determined by the type of load. 
Here, it can be seen that this algorithm, the load distribution, it does not matter what 
model is our load. After calculating active power and reactive power, it should obtain the 
values of the current drawn by the load:

At this stage, it is necessary to calculate the currents of the lines. However, this needs a 
logical method for tracking network nodes. For this purpose, it is better to use the trian-
gular cross-sectional matrix of lines, and denote each line with respect to its end node. 
First, it should be started to sweep to calculate the current of the lines from the end node 
so that after calculating the current of the i-th node, according to Eq. (11), this current 
is equivalent to the linear current with the same number, and if in the triangular cross-
sectional matrix Zij is opposite to zero; the current of the i-th line joins with the current 
of the j-th line and is in the current of the i-th line. For example, the upper triangular 
cross-sectional matrix of the above figure is given below. According to this matrix, it is 
possible to extract the power, current and configuration of the network for power trans-
mission. Moreover, due to the network’s radicalness, the volumes of this matrix are zero. 
This factor is a weakness for this method due to occupation of a large value of computer 
memory.

Given the above-mentioned points, the current of the lines is calculated during 
a sweep stage. Now the sweep starts. During this step and according to the following 
equation, it is better to calculate the voltage of the nodes:

when this cycle is completed, the voltages obtained at this stage are compared with the 
corresponding voltages in the previous step, and if the difference in the two consecutive 
cycles is less than the tolerance level, the operation is repeated, and eventually the result 
is desirable.

As shown in Fig. 3, this method, in addition to its limitations in terms of execution 
(Kahn and Tucker conditions), also faces problems in weighting, and the output answer 
depends on the input weights. In addition, in these methods, in order to obtain a set of 
effective solutions, it is necessary to solve the algorithm many times and a new solution 
must be obtained in each execution. In weighting methods after solving, there are no 
problems caused by weighting, which were stated in the mentioned method. Also, by 
using evolutionary algorithms in these methods, solving a problem once will lead to a set 
of effective solutions. In the same way, these algorithms work with an emphasis on mov-
ing toward the optimal solution, and by defining the cost function in it, the optimality 

(11)Qi = QischVicalculateVibaseβ Qi = Qsch
i

(

|V |calculatei

V base
i

)β

(12)Ii =
Pi − jQi

V ∗
i

(13)Vj = Vi − IiZij (1− 12)

(14)abs
(

V k−1
n − V k

n

)

≤ ε (1− 13)
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conditions can be defined. On the other hand, in these algorithms, there is no emphasis 
on Kahn and Tucker’s conditions, like what was in the pre-solution weighting methods.

In the backward and forward load distribution algorithm in Fig. 5, there are two basic 
steps, which are very easy to learn, and these two steps are used for all radial networks. 
First, the voltage of all bus bars of the studied network is equal to 1. And two sweepers 
are used to find the new voltage and current values of the branches.

Modeling result
In this section, the placement and optimal amount of PV sources will be obtained in dis-
tribution networks of 33 and 69 bus. The proposed system with a capacity of 3.72 MW 
and 2.30 MVAR for total network losses, the voltage level of the network is 12.66 kW, the 
real network losses are 209.913 kW, and the reactive losses are 142.52 kVAR for single 
power factor, 0.85 post-phase and 0.85 prophase, respectively.

The optimal placement and sizing of PV sources for the 33‑bus distribution network

•	 Output unit power factor

The chart of the amount of the objective functions (including total system power 
losses as the first target, deviation of the shins as the second target, and the ratio of 
reactive power to active lines as the third objective). (a) The optimization algorithm 
has been shown in three dimensions for the 33 bus and the output power factor of 
the unit, (b) Voltage profile is showed in a range of variations, and (c) total power 
losses of network including active and reactive losses under the output power factor 
of the unit resulting is shown Fig. 6. The optimal response is obtained using the fuzzy 
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Fig. 5  Flowchart designed to coordinate with backward/forward sweep load flow
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Fig. 6  The graph of the value target functions in the 33-bus network, a unit resulting, b 0.85 Post-phase, c 
0.85 pre-phase

Table 1  Parameters of placement and sizing under the output power factor of the unit

Number bus Power (kW)

5 875

11 487

16 694

24 954

28 746
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decision method and is shown in concentrated blue in Fig. 6. Also, the placement and 
power output of PV sources in this case are shown in Table 1.

•	 Output power factor 0.85 Post-phase

Figure 7 shows (a) The optimization algorithm has been shown in three dimensions 
for the 33 bus and the output power factor of the unit, (b) Voltage profile is showed in 
a range of variations, and (c) total power losses of network including active and reac-
tive losses under the output power factor of the unit resulting to 0.85 post-phase. In 
this figure, the optimal response is also shown as solid. Moreover, the output power 
of PV sources, along with their placement after optimization, is presented in Table 2.

Fig. 7  The graph of voltage Profiles in the 33-bus network, a unit resulting, b 0.85 Post-phase, c 0.85 
pre-phase
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•	 Output power factor of 0.85 pre-phase

The optimization algorithm has been shown in three dimensions for the 33 bus 
and the output power factor of the unit (a), Voltage profile is showed in a range of 
variations (b), and total power losses of network including active and reactive losses 

Table 2  Parameters of placement and sizing under the output power factor of 0.85, post-phase in 
the 33-bus network

Number bus Power (kW)

9 632

15 680

21 439

23 1214

27 735

Fig. 8  The graph of total power losses in the 33-bus network, a unit resulting, b 0.85 Post-phase, c 0.85 
pre-phase
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under the output power factor of the unit resulting of 0.85 pre-phase (c) is presented 
in Fig. 8. The optimal response is obtained with the aid of a fuzzy decision and, as can 
be seen, the optimal response is shown in solid form. Table 3 also shows the optimal 
placement and capacity of PV sources in the 33-bus network under the output power 
factor of 0.85 pre-phase.

Optimal placement and allocation of PV sources in the 69‑bus network

•	 Unit output power coefficient

The graph of the value of the objective functions has been shown in three dimensions 
for the 33 bus and the output power factor of the unit (a), Voltage profile is showed in a 
range of variations (b), and total power losses of network including active and reactive 
losses under the output power factor of the unit resulting of 0.85 pre-phase (c) are pre-
sented in Fig. 9. In this figure, the optimal response is shown in solid blue. The optimal 
placement and allocation of output power of PV sources after optimization are shown in 
Table 4.

•	 Output power coefficient 0.85 post-phase

In Figs. 9, 10 and 11, The graph of the value of the objective functions has been shown 
in three dimensions for the 33 bus and the output power factor of the unit (a), Voltage 
profile is showed in a range of variations (b), and total power losses of network including 
active and reactive losses under the output power factor of the unit resulting of 0.85 pre-
phase (c) are presented. In these figures, the optimal response is shown in solid blue. The 
optimal placement and allocation of output power of PV sources after optimization are 
shown in Tables 4, 5 and 6. The comparison of the proposed modeling with other valid 
methods is clearly presented in Tables 7 and 8.

Conclusion
In this paper, the placement and determining the optimal capacity of PV systems in 
the standard distribution networks 33 and 69 of the IEEE bus are accomplished by 
the NSGA-II algorithm. The objective function modeling of the problem is also the 
active power losses and the total reactive power of the system, the voltage profile of 
the shins, and the ratio of active power to reactive lines. A fine coefficient is also con-
sidered within the objective function when the allowed range of ± 10% of the shaft 
voltage is violated. Moreover, due to the radial nature of the distribution networks 

Table 3  Parameters of placement and sizing under the output power factor of 0.85 pre-phase in the 
33-bus network

Number bus Power (kW)

9 632

15 680

21 439

23 1214

27 735
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Fig. 9  The graph of the value target functions in the 69-bus network, a unit, b 0.85 Post-phase, c 0.85 
pre-phase

Table 4  Parameters of placement and sizing under the output power factor at unit in the 69-bus 
network

Number bus Power (kW)

17 123

23 169

36 879

39 799

50 2257
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under study, backward/forward sweep load-flow method is used. The results of the 
optimization show the improvement of the voltage profile and the significant reduc-
tion in total power losses and the improvement of the active-reactive power to reac-
tive ratio lines in the IEEE standard 33 and 69-bus distribution networks. Moreover, 
the results show that changing the power factor of PV sources will not affect the 
amount of the above-mentioned objective functions in the distribution networks, and 
will only change the placement and capacity of the PV resources.

Fig. 10  The graph of voltage profiles in the 69-bus network, a unit resulting, b 0.85 Post-phase, c 0.85 
pre-phase
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Fig. 11  The graph of total power losses in the 69-bus network, a unit resulting, b 0.85 Post-phase, c 0.85 
pre-phase

Table 5  Parameters of placement and sizing under the output power factor of 0.85, post-phase in 
the 69-bus network

Number bus Power (kW)

17 123

23 169

36 879

39 799

50 2257
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Table 6  Parameters of placement and sizing under the output power factor of 0.85 pre-phase in the 
69-bus network

Number bus Power (kW)

3 136

21 548

28 974

39 831

51 2012

Table 7  Comparison of the results of NSGA-II and SEW algorithms for decision-making by fuzzy 
logic method

Method The first bus The 
second 
bus

Value of DG1 
for first bus 
(KW)

Value of DG2 
for second 
bus (KW)

Cost ($) Total losses 
(KW)

Mean 
Voltages 
(P.U)

Original 
Network

– – – – – 210.99833 0.94532

Fuzzy logic 
for SEW algo-
rithm

15 32 811.3730 497.2931 6801.1768 73.72540 0.97725

Fuzzy logic 
for NSGA-II 
algorithm

31 17 622.58300 686.0790 6801.1556 73.87335 0.97673

Table 8  Comparison of computation time of SEW and NSGA-II algorithms for decision-making by 
fuzzy logic method

Algorithm Number of Function 
Evaluations (NFE)

Algorithm computation 
time (second)

Fuzzy logic 
computation time 
(second)

SEW algorithm 2,455,200 23,424.95940 7769.83621

Fuzzy logic for NSGA-II 
algorithm

23,051 141.53268 0.00069
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