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Introduction
Nowadays IFOC schemes are generally adopted in ASD controllers of IM for better 
speed control, both during its transient and steady-state running [1]. Determination 
of accurate values of ECPs is essential based on which the time constant, slip speed 
relationship, d-q axis currents, etc., can be evaluated for successful implementation of 
IFOC. But during running conditions some of the ECPs, stator, and rotor resistances, 
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in particular, are getting changed due to harmonics heating effect, skin effect, change 
in load, and under-voltage running reasons [2, 3]. These changes in ECPs are the 
sources of errors resulting in the inaccurate generation of gate triggering pulses and 
hence proper control of speed could not be achieved. In IFOC-based VSI-IM drive, 
accurate estimation of ECPs during steady-state and transient conditions is an age-
old challenge. Moreover, high-speed DSP-based processors are also being utilized to 
process these ECPs data following the IFOC algorithm with the feedback of speed, 
temperature, loading conditions, etc. [4–8].

For estimation and optimization of IM parameters, various conventional methods 
like spectrum analysis and sinusoidal signal perturbation as well as intelligent con-
trol algorithms like GA, PSO and their hybrid form, bacterial foraging, anthill, GSA, 
etc., offline methods [9, 10] are proposed. These algorithms are easy to implement 
and support multi-objective optimization but the convergence time is large, which 
makes these algorithms incapable of online application. To overcome these problems, 
FLCs are used but the rule-based FLC requires all the possible variations of the motor 
condition. Hence FLC could not be able to produce a satisfactory result where all of 
this information is not available. Various other state observers like EKF, Luenberger 
observer and its extended form, polynomial regression method [11], etc., can estimate 
parameters efficiently but higher complexities make these algorithms time-consum-
ing and becoming difficult for their real-time implementation even with DSP-based 
processors [3, 4].

In works [12–16], ANN algorithms using high-speed DSP-based processors are pro-
posed as these algorithms perform faster than other heuristic ones. The efficiency of 
the ANN algorithm depends upon its structure, chosen optimizer, and training logic. 
Accordingly, RNNs, LSTM, CNNs, encoder-decoder-based networks, and GNNs are 
preferred [12]. But these types of network are either unsupervised or self-supervised 
type for which the training of these NN models is relatively slow and also needs extra 
memory to hold all the set of sampled data [12–16]. Besides, most of the NN, RNN, and 
GNN also suffer from exploding and vanishing gradient problems. To minimize these, 
some improved activation functions like Leaky ReLu [17] and Adam optimizers [18] are 
chosen to get a fast and stable convergence. However, the activation function like Leaky 
ReLu does not provide a satisfactory result with RNN.

For close-loop scalar or vector control methods, estimation of speed is very essential 
and any arrangement for speed sensor mounting makes the drive less reliable and costly. 
Without these sensors, it is possible to estimate speed from the feedback of stator volt-
age and current signals, but these processes are complex and their accuracy depends on 
motor parameters. Various methods have been proposed for sensorless speed estimation 
like slip calculation, EKF, Luenberger observer, AI, MRAS, sliding mode observers, flux 
linkage method, back emf method, etc. [19–22].

Temperature variation is the main cause of variation in the stator and rotor resist-
ances. This may lead to inaccurate speed estimation and vector control logic may get 
detuned. Thus temperature correction of these resistances is essential. Various methods 



Page 3 of 30Banerjee and Bera ﻿Journal of Electrical Systems and Inf Technol            (2022) 9:20 	

are proposed like dc signal injection, ac signal injection, Goertzel algorithm to the com-
plex current and voltage space vectors, thermal observers, voltage disturbance observ-
ers, etc., to estimate the temperature or the stator resistance directly [23–26].

Getting motivated by these, the authors of this paper propose a model reference, 
the adaptive system-based plant model, where a BPANN-based efficient algorithm is 
adopted to estimate accurate equivalent circuit parameters. The ECPs are estimated 
both in pre-starting in off-line mode, during starting transient and running conditions 
as well in an on-line mode without the requirement of physical tests like no-load and 
blocked rotor tests. The BPANN-based online estimation scheme is adopted to consider 
any change in parameters due to changes in the running conditions like temperature 
variation which in turn makes the drive more accurate and efficient. Adoption of the 
Adam method [18] makes the tuning of the weight factors of ANN at a faster conver-
gence rate such that this tuning is completed during the starting of the motor irrespec-
tive of the capacity of the motor. The H-G [27, 28] method is adopted for the evaluation 
of ECPR in the reference model during starting the transient period with the help of 
nameplate data [29] and the feedback signals of voltage and current. This ECPR is used 
to train the BPANN during motors starting transient period. Besides, for diagnosis pur-
poses, a machine monitoring unit is also developed that interfaces with the DSP-based 
microcontroller and displays all the machine parameters, variables, and feedback values 
before and during running conditions. The proposed system has the following unique 
features: (i) The IFOC controller is broadly constituted with two models namely the ref-
erence model and the Plant model to generate ECPs independently. (ii) The ECPs have 
been generated accurately from MR using motor nameplate data and the H-G diagram 
method up to the starting transient period. (iii) The BPANN gain parameters of MP are 
getting tuned during the starting transient period. After then, ECPs are evaluated during 
the entire running condition of the motor. (iv) To maintain the accuracy in ECPs evalu-
ation from MP, the estimation of motor resistance during running conditions as well as 
temperature using the SSI method as well as rotor speed using the sensorless scheme is 
adopted. (v) The various parameters during running conditions can be monitored from a 
remote GUI using its MMU module. This can also be used for diagnosis purposes.

The uniqueness of the proposed work is that an online accurate ECPs estimation 
scheme is developed with the help of a robust IFOC controller using BPANN based plant 
model along with their necessary corrections using feedback of sensorless estimated val-
ues of speed and motor temperature.
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Fig. 1  Per phase equivalent circuit of IM in d-q frame
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Proposed IFOC based induction machine drive
Equivalent circuit parameter model of IM

The steady-state per phase equivalent circuit of the IM referred to the stator side in the 
d-q reference frame is shown in Fig. 1 where Rs, Rr, Xs, Xr, Ls, and Lr represent the stator 
and rotor resistance, reactive inductances while Rm, Xc, and Lm represent core resistance, 
reactance, and mutual inductance, respectively. The equivalent impedance of the system 
is given by Eq. (1)

To study the various dynamic conditions during the running of the motor, the IFOC 
scheme is generally adopted. To implement IFOC, this steady-state per phase equivalent 
circuit is represented by dynamic equivalent circuit in the synchronously rotating d-q 
model as shown in Fig. 1, where the stator current Is is represented by (ids, iqs) and rotor 
current Ir as (idr, iqr), the stator and rotor fluxes by (ψds, ψqs) and (ψdr, ψqr), stator and 
rotor voltages by (vds, vqs) and (vdr, vqr). The synchronous speed is ωs and the rotor speed 
is ωr.

Proposed schematic for IFOC drive

The schematic diagram of the proposed IFOC of the VSI-IM drive, as shown in Fig. 2, 
has four major blocks—namely (i) power unit, (ii) control unit, (iii) sensor unit, and (iv) 
machine monitoring unit (MMU). The power unit is built with IGBTs in the H-Bridge 
configuration to provide the controlled power output to the IM. The control unit is built 
with a fast operating DSP microcontroller; the firmware of which estimates the proposed 
equivalent circuit parameter required to generate triggering pulses following IFOC algo-
rithms with greater accuracy. The IFOC controller logics are described in detail in the 
following “The IFOC controller schematic” section to generate modulating signal cor-
responding to the SVM scheme. Accordingly, the generated triggering pulses are fed to 
the respective IGBTs through their proper gate driver circuit so that the desired speed 
of the IM can be achieved. To achieve better speed control, the feedback signals of volt-
age, current, and speed are fed to the IFOC logic. Thus, the sensor unit is equipped with 
voltage hall sensors for voltage sensing, a current hall sensor for current sensing, and an 
optical encoder for rotor speed sensing. To have a better understanding of the changes in 
the internal parameters of IM during ts running conditions, a PC-based data acquisition 
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Fig. 2  IFOC based VSI-IM drive prototype model
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system is developed where the ECPs from IFOC is communicated serially. The MMU 
is a PC-based GUI to display, analyze and control various running states by collecting 
data from the microcontroller using serial communication. This state-of-the-art GUI is 
extremely helpful in designing and debugging the control algorithm, for initial training 
of single layer BPANN weight factors, etc. From this GUI, the desired speed can also be 
set.

The IFOC controller schematic

The adopted IFOC controller schematic with independent paths for the torque and flux 
control using orthogonal currents ids and iqs as shown in Fig. 3. The d-q stator currents as 
reference are generated from flux and torque flow paths using Eq. (2) and (3).

where ψr is the rotor flux and Te is the electromechanical torque, p is the number of 
poles, K1 and K2 are the gains of the flux flow path and torque flow path, respectively. In 
IFOC, the ψqr = 0 and ψdr = ψr. The gain K3 is used to generate the ωsl following Eq. (4) 
which in turn helps to generate a unit vector for axis transformation as shown in Eq. (5)
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As seen in Fig. 3, three PI controllers are used, in the torque and flux flow path along with 
ids

* and iqs
* signals. The torque control can be achieved from speed error since the devel-

oped electromagnetic torque affects the speed dynamically. Applying PI controller into the 
error signal between reference and measured or calculated speed and current. The PIs are 
the representation of the PI controller in the torque flow path.

The errors between the actual and reference values of ids and iqs are fed to the 
respective PI controllers (PIf and PIT) to generate equivalent d-q axis voltages (vds

*, 
vqs

*).

The flux ψr is estimated with the Vs and ωr from the nameplate data before the start 
of the motor and remains almost constant during running for which ids also remain 
constant. After transformation to vα and vβ, the vsvm is generated for the SVM to pro-
duce PWM pulses for the inverter [1]. The vsvm and its inclination angle α [1, 2] are 
calculated as

Using Eq.  (8) the switching instances of the space vector modulation (SVM) are 
determined as

where the modulation index M is given by

where Tc = Tpwm/2, and Tpwm. The instantaneous phase voltage is shown in Eq. (11) by 
time averaging of the space vectors during one switching period for the sector.

where Tc = Tpwm/2. It is evident from the above equations that the performance of the 
IFOC controller is primarily dependent on the equivalent parameters of the IM as well 
as the gains of the PI controllers. Thus evaluation of equivalent parameters of IM before 
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starting, during the transition phase as well as during running is essential. Generally, no 
load and blocked rotor tests of IM are performed to estimate its equivalent parameters. 
But with our scheme, these tests are avoided as ECPs are evaluated using the proposed 
MRAS model during the stalled, transition, and running conditions.

Model reference adaptive system for ECPs estimation
To implement the IFOC scheme for the drive, the accurate estimation of the required 
ECPs is the most challenging task as these ECPs get changed with the running condi-
tions of the motor.

The ECPs depend mostly on the slip, supply frequency, loading, and inside tempera-
ture of the motor, the accurate measurement of which are very much essential to get 
better control performance of the IFOC. Accordingly, an MRAS model [5, 7] for ECPs 
estimation is developed as shown in Fig. 4. In the form of BPANN, the Reference model 
and BPANN-based plant model are the two basic building blocks of the controller.

Formulation for reference model MR

This model is used to generate ECPR set, i.e. the reference values of ECPs namely Rs1, Rr1, 
Lm1, Ls1, Lr1 during the pre-start and post-start transition period up to the steady-state 
running condition of the induction motor. This ECPR set is utilized to train the gains in 
the plant model during this entire transition period i.e. till the steady-state running of 
the motor up to the desired speed is achieved.

Plant Model

R

T

Ts= Stalled duration

Tt=Transition duration

T= Training state             

R=Running state

ECP

ECP Evaluation using 
BPANN

BPANN gains 
(Tuning for T ≤    (Ts+Tt))
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Ls, Lr, 

Lm

ECP = ECPR for T ≤ (Ts+Tt)

ECP = ECPP for T > (Ts+Tt)

Adaptation 
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Nameplate Data  

Vs, Is, Nr, pf, Pout
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Rs, Rr estimation 

using SSI

Reference Model

ECPR
Evaluation 

Rs1, Rr1, Ls1, Lr1, 

Lm1

Ts

Tt

ECPP

Error

Fig. 4  MRAS scheme for ECPs estimation
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ECPR generation before start

The H-G diagram method, IEEE 112, and the NEMA specification are used to generate 
the ECPR set based on the nameplate data before starting the motor. The stator voltage 
Vs, stator current Is (Ia, Ib), rotor speed Nr, input power factor pf, and output power Pout 
are the nameplate data to be provided. The H-G diagram is represented by an operating 
circle in the complex plane to analyze the power consumption scenario of an IM. The G 
and H functions [27] are having the dimension of inductance to represent the active and 
reactive power consumption status, respectively. The G function is directly related to 
developed torque and the H function is concerned with the magnetizing flux. The per-
phase equivalent circuit impedance of Eq. (1) is modified by ignoring Rc and is expressed 
as in Eq. (12). The ECPR set is evaluated using the equations derived as follows:

Following the construction method of the H-G diagram, the operating points on the 
diagram are a function of slip ωsl and can be expressed as

Since G(ωsl) and H(ωsl) represent active and reactive power consumption, their locus 
describes a circle in the so-called H-G plane for the variation in load or even change in the 
ECPs for any other reasons [17]. This circle is graduated with the ωsl increasing from the 
purely synchronous point H0 to its point H∞, from which stator inductance Ls and the total 
leakage coefficient σ can be derived using Eq. (15)

where the current Inl can be evaluated from the nameplate data and NEMA specification 
without performing the real hardware test. It is assumed that σ is quite small for which 
H∞ ≈ 0, circle diameters become directly a function of the stator flux ψs as shown in 
Eq. (16). The H-G diagram identifies the parameters in the (α, β) reference frame. The P 
and Q power components are estimated from the dot and cross product of the Vs and Is 
vectors in the (α, β) reference frame using Clarke Transformation. The values of P and Q 
are obtained as
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}
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The values of G(ωsl) and H(ωsl) at any instantaneous point i can also be calculated from 
given P and Q as

where k is obtained from NEMA guidelines. The stator and rotor resistance Rs1 and Rr1 
and rotor time constant τr can then be estimated from G(i) and H(i) as,

Thus the value of rotor inductance Lr1 can be estimated from τr and Rr1. The mutual 
inductance can thus be evaluated as

The gain parameters of IFOC K1, K2, and K3 as shown in Eqs.  (2)–(4) are evaluated 
using the ECPR set from the nameplate data before starting.
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ECPR generation during the transition phase

It is evident from Eq.  (2) that the value of ψr is dependent on the mutual inductance. 
But the mutual inductance varies on variations in resistances and both of them vary due 
to variations in motor temperature during the running condition. This in turn causes 
a change in ids and IFOC logic accordingly. Thus though the H-G diagram method is 
efficient enough for estimating the ECPs during the pre-start condition, its use is not 
suggested during the running condition. Accordingly, during the transition phase, the 
feedback values like Vs, Ia, and Ib are provided as input to the reference model on basis 
of which the ECPR is generated using equations are (16)–(21) to tune the plant model 
ECPp. The value of Isαβ (iα,iβ) and the Vsαβ (Vα, Vβ) are evaluated using Clarke transforma-
tion as shown in figure vii7.

Formulation for plant model MP

The estimated ECPR set, using the above-described method, provides accurate results so 
long the operating conditions, i.e. load demand, slip, temperature, supply frequency remain 
unaltered. But, as the values of Rs1, ωsl varies with change in motor temperature and slip, 
the estimated ECPR set, Lm value in particular, from the H-G method produces an errone-
ous result. This needs a switchover of the ECPs estimation from the reference model to the 
plant model during the running condition of the motor. The plant model is built based on 
the backpropagation principle where ANN with an input layer of three neurons and three 
hidden layers of five, four, and two neurons respectively, and one output neuron model 
(3-5-4-2-1) is used in its forward path as shown in Fig. 5. The value of each of the ECPs, 
i.e. Rs, Rr, Lr, Ls, and Lm, have been evaluated accurately during steady state. For working of 
BPANN, an input matrix [A]3×5 is constituted where each row contains three values of one 
of the parameters and each column represents each of the parameters of Rs, Rr, Lr, Ls, and 
Lm. Out of the three values of each row j, one value (aj) is calculated by using the respective 
equations from (22) to (24) and the other two values are estimated considering a deviation 
range of ± €. This creates a set of values like [aj−ε, aj, aj+ε] for each row j of [A]3×5 and is 
treated as the input neurons for the ANN module to estimate the parameter corresponding 
to that row j. As j can vary from 1 to 5 to represent Rs, Rr, Lr, Ls, and Lm, respectively, the 
ANN structure is to be utilized four times to estimate all the ECPs in a one-time step. The 
entire operation of the plant model can be divided into two subparts—namely (i) starting, 
i.e. start of the motor from standstill to the set speed achievement and (ii) running condi-
tions of the motor. The functioning of ECPs under these conditions is described below.

ECPs evaluation during the transition period

Before start, the ECPR values are utilized for input matrix [A]3×5 and the weight updation 
procedure begins offline so that the overall time of convergence can be minimized. After 
the offline training is done the IM is started with the parameters obtained from MR. Dur-
ing this period, ECPs copy the values of ECPR to generate the triggering pulses following 
IFOC schemes. It is considered that the value of Ls and Lr are assumed to be the same for 
small to medium motors whereas the ratio between these two parameters can be taken as 
per NEMA specifications for larger motors for their evaluation. The value of Rs and Rr is 
estimated using (22) where vssi and issi are the voltage and current signals derived from the 
SSI method as illustrated in “Estimation of Rs using small signal injection method” section.
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Therefore the inductances can be evaluated as

where slip s is changing with the estimated speed

Considering the inputs of each BPANN topology as

three such inputs for each j are mapped to the four neurons of the first hidden layer by 
their corresponding weight factor w. The selection of the weights is done in a random man-
ner such that the neurons of this layer are initialized as in Eq. (26)

The BPANN structure is designed in such a way that the vanishing gradient and 
exploding gradient problems are minimum. For simplicity, the number of the hidden 
layer is considered to be two where Leaky Relu and Adam activation function is used 
for optimization. But in some work [30, 31] use of three hidden layers has also been con-
sidered to improve accuracy. The use of three hidden layers poses the problems like: (i) 
increase in network complexity, (ii) increase in convergence time, as well as the num-
ber of iterations to converge, (iii), increases the processor’s computational overhead, and 
accordingly, high power processors are required for its implementation. Whereas with 
the use of two hidden layers, these problems are very less and the system with two hid-
den layers can easily be implemented with a low-power processor. But considering the 
accuracy aspects for the evaluation of ECPs of IM, three hidden layer system control 
structure is considered in this work. The activation function used here is Leaky Relu 
which is defined as Sir(h) = hir for hir ≥ 0 or Sir(h) = 0.01hir for hir < 0 where i represents 
the number of hidden layers and r represents the number of neurons in that particular 
hidden layer. For this design, i and r maybe 1 to 2 and 1 to 4, respectively. The second 
hidden layer neurons are represented similarly as given by

(22)Rs =
vssi

issi
,Rr = Rs/k

(23)Ls + Lr =
1

2π f

√
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(
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The output of the ECPpj is expressed as

Besides, the BPANN algorithm is designed in such a way that the weight factors are 
trained during the speed transient period and/or starting period of the motor while 
these periods are identified till the desired set speed is achieved from the very start i.e. 
stopped or stalled condition of the motor.

For the training purposes, each of the output parameters from MP is compared with 
the respective reference parameters coming out from MR i.e. the error between the 
parameters of the MR and MP are Ej = (ECPRj-ECPPj) are evaluated such that The loss or 
error functions are then generated following Eqs. (35) which are minimized using Adam 
rule to recalculate the weights in backpropagation manner,

where bj is the loss function for each of the jth parameters. Thus the weight updation 
process or the training process continues until the difference between the output of all 
the elements of MR and MP will be less than or equal to the tolerance limit δ,

The basic weight updation rule as stated in the gradient descend (GD) method is 
expressed as in Eq. (32). This weight updation method is modified as per the ADAM rule 
as described in Eq.  (35–38). This ADAM rule is a combined form of the Adagrad and 
RMSProp adaptive GD method, the details of which are explained in reference (25), and 
hence the description is not included in this paper.

where mn is the momentum term and the value of mn and rn is given by

and

(28)
�
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
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(29)ECPpj =
[
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]

[
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]

(30)bj =
1

2
E2
j , j = [Rs = ECPRs,Rr = ECPRr, Ls = ECPLs, Lm = ECPLm]

(31)Ej = ECPR − ECPPj = ±δ

(32)w(n+1) = w(n) − η
∂E

∂wn
, gn =

∂E

∂wn

(33)w(n+1) = w(n) −
η

√

γ + r∗n
×m∗

n

(34)mn = βn × (mn−1 − 1)+ (1− β1)× gn, gn =
∂E

∂wn

(35)r∗n = βn × (rn−1 − 1)+ (1− β2)× g2n
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The BPANN gain tuning procedure continues till the weight updating rule is satisfied, 
the duration of which is well within the starting transition period of the motor.

ECPs evaluation during running

Once the training period is over, the ECPs estimation is started with the plant model by 
making a switch over to the selection of input towards sampled feedback of (Vs, Is(Ia, Ib)). 
The parameters are calculated using Eqs. (22)–(24) to form the input matrix of BPANN 
and then this [A]3×5 is used to evaluate ECPP. The values of K1, K2, and K3 are also evalu-
ated following Eq. (37), and all the IFOC d-q voltage, current, flux, slip frequency, etc., 
are calculated using Eq. (2)–(11).

Stator resistance and speed estimation
Estimation of Rs using small signal injection method

The Rs measurement method is based on the injection of a very low-frequency, low 
amplitude lock-in signal to the stator along with the three-phase supply fed to the 
motor using the converter. A basic lock-in system consists of a lock-in signal genera-
tor, an amplifier, a PSD, and a low pass filter, the schematic diagram of which is shown 
in Fig. 6. All the constituent blocks of Fig. 6 are grouped into DSP-based lock-in sig-
nal generators with LIA for voltage and LIA for current, sensor unit, and power unit 

(36)m∗
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1− βn
1

, r∗n =
rn

1− βn
2

,β1 = 0.9,β2 = 0.999
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Fig. 6  Schematic of Signal injection method
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blocks for a better understanding of their working. The DSP-generated lock-in signal 
of very low amplitude is passed through the stator along with the stator voltage after 
their necessary modulation to produce a lock-in stator current depending on the sta-
tor resistance. This lock-in current is amplified to a level adequate for the PSD in the 
sensor unit and is then passed through an LPF to extract the noise-free return current 
signal. The stator resistance is estimated during running conditions with the ratio of 
the injected lock-in voltage and the return current signal. The amplitude of lock-in 
voltage vr is made so small that it is unable to contribute any impact on the running 
of the motor while its frequency is made very low so that its inductive effect can be 
neglected and the return current Ir will be limited only by the stator resistance Rs. 
Besides, this kind of infinitesimally small impact is further reduced with the intri-
cacies of intermittent injection of lock-in signals. In its intermittent operation, the 
lock-in signal is injected for its one-period duration at an interval of nTlc making a 
duty cycle δlc such that δlc = Tlc/nTlc where n is the number of cycles and Tlc = 1/f2 is 
the period of lock-in signal of frequency f2. The term f3 = 1/nTlc can also be termed as 
refresh rate for Rs estimation. The vsvm(t) is added with a very small ac signal of ampli-
tude vr(t) and frequency (f2) to produce a resultant voltage v(t) for δlc period such that

For detection purposes during δlc period, the DSP-based processor multiplies the 
feedback voltage Vb(t) with a modulating signal r(t) having the same amplitude and 
frequency as that of the vr(t). The in-phase component of vr(t) is rx(t) = sin(2πf2t) 
and quadrature (90° shifted) ry(t) = cos(2πf2t) components which produces xvb(t) and 
yvb(t), respectively, so that

After this, both the signals are passed through the digital low pass filter to eliminate 
all the ac components and only the dc component is obtained of both in-phase xvbdc and 
quadrature component yvbdc. Thus the voltage obtained after filtering is

The current ib(t) is also sensed by the Hall sensor which contains the load current, har-
monic distortion, and noise component. The i(t) is also multiplied by the same r(t).

After this, both the signals are passed through the digital low pass filter where the 
noise, harmonic distortion, and the other ac components get filtered and the only dc 
component is obtained as xibdc and yibdc. Thus the value of issi is given by

The frequency (f2), as well as the amplitude of vr(t), is kept very low so that its contri-
bution to the net flux production is negligibly small such that

(38)v(t) = vsvm(t)+ vr(t) for 0 ≤ t ≤ δlc and v(t) = vsvm(t) else

(39)xvb(t) = vb(t)× rx(t), yvb(t) = vb(t)× ry(t)

(40a)vssi =
√

x2vbdc + y2vbdc

(40b)xib(t) = ib(t)× rx(t), yib(t) = ib(t)× ry(t)

(40c)issi =
√

x2ibdc + y2ibdc
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Thus the stator resistance can thus be computed as follows

Thus this method of resistance estimation takes care of the temperature effect of the 
motor and thus the use of a temperature sensor is avoided. Again if the temperatures 
of the motor (T(lc+1) and Tlc) are known at two different running conditions, the corre-
sponding resistances can also be evaluated using equation ( 43) provided the coefficient 
of expansion λ is known

where Rs(lc+1) and tlc+1 represent the current value of the resistance and temperature, 
and Rslc and tlc denote the precious value, respectively.

Sensorless speed estimation scheme

The performance of the IFOC scheme depends on the variation of temperature which 
varies due to environmental changes, the presence of harmonics, and overloading as 
both the stator resistance Rs and the rotor resistance Rr vary with it. Fluctuations in the 
speed may occur due to a change in load, change in the time constant due to temperature 
rise. For a variation of Rr, the time constant (τr = Lr/Rr) varies inversely. An increase in 
temperature in general increases the rotor and stator copper losses Prcl, Pscl for which the 
total loss Ploss increases. Thus if the supply voltage Vs and the output power (Pout) remain 
constant, IM will draw more power from the input for which the motor efficiency will 
reduce and the stator and rotor currents (Is, Ir) will also increase. In normal operating 
conditions, as the motor starts picking up with the speed the torque Te becomes maxi-
mum at slip sm before coming to the operating point following Eq. (45)

Thus the rotor speed varies with ECPs variation. At steady state, the d-q axis voltages 
can be expressed by Eqs. (45) and (46) considering constant flux by neglecting the rate of 
change of flux.

The reactive power can be expressed as in Eq. (47)

(41)
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∣
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∣
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s
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∣

∣

∣

∣

(42)Rs =
vssi

issi

(43)Rslc+1 = Rslc(1+ ��Tlc) where �Tlc = Tlc+1 − Tlc

(44)ωr = ωs

(

1−
smTe

2Tem

)

, sm =
Rr

Ls + Lr

(45)v∗ds = Rsi
∗
ds − ωsσLsi

∗
qs, σ1 = 1−

L2m
LsLr

(46)v∗qs = Rsi
∗
qs + ωsσ1Lsi

∗
ds

(47)Q1 = vqsids − vdsiqs
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By substituting the value of vds
* and vqs

* in the above equation, the reference value of 
the reactive power is

assuming negligibly small measurement error, the reference values of (vds
*, vqs

*, ids
*, iqs

*) 
must be equal to the measured values (vds, vqs, ids, iqs), and hence the reactive power eval-
uated with reference values must be equal to the actual value. Thus by equating (47) and 
(48)

Accordingly, the shaft speed is estimated by

where ωsl
* and ωsl can be expressed as in Eq. (4). Before start, the ωr is estimated by

To ensure accurate estimation of the ωsl, a PI controller with gain kpωsl, kiωsl is intro-
duced as in Eq. (51) Substituting this ωsl in Eq. (51) the expression modified shaft speed 
expression will be.

With this accurate performance speed estimation is achieved. The PI controller here is 
tuned using the Z-N method. The schematic of the speed estimation method is shown in 
Fig. 7.
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1 = ωs(Lsi

∗2
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(
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(
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Flowchart for the proposed BPANN based optimization method
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Compute t1, t2, t0, and M.I following equation (9)-(10)

Initialize [Aj] with ECPR values using (25) and the BPANN weights using (26)-(29).

Initialise the control parameters η=0.05, γ=0.00001, δ=0.001, β1=0.9, β2=0.999
Initialise internal loop counter c=1, stopping counter q=1and tune_flag = 0

Declare an array B[100] to store η values. 

Declare variables d1, d2 to store the values of m and r and d1(0) and d2(0) to hold their initial values.

A5

Experimentation
The viability of the proposed controller development based on the Adam technique is 
tested in two stages—(i) in the first stage, the entire scheme is simulated using MAT-
LAB/Simulink environment while (ii) the simulated development is tested with actual 
hardware implementation as well a customized graphical user interface (GUI) devel-
opment for parameter monitoring purposes, all of which are described as follows.
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Simulation results

Case 1: Avoidance of physical tests

The parameters of an IM are simulated using both GD and Adam algorithms based on 
the nameplate data viz. 3.3 kW, 3-φ, 415 V, 50 Hz, 6.9A, 1415 rpm and pf = 0.8. For vali-
dation purposes, the equivalent circuit parameters of the motor are evaluated from con-
ventional physical no-load and blocked rotor tests (PT). The parameters estimated from 
PT, MR, and MP are presented in Table 1 along with the percentage error of ECPs with 
that of paper [12] for comparison purposes. It is evident from Table 1 that the errors are 
very similar between different methods suggesting the need of performing PT can be 
avoided.

The ECPs evaluated in Table 1 is based on the BPANN with three hidden layer struc-
ture of the plant model as shown in Fig.  5. But for simplicity in implementation pur-
poses, two hidden layer structure is widely used. Thus to make a comparison in achieved 
accuracy the experiment is also performed with two hidden layers and the result of both 
two and three are tabulated in Table 2. It is evident from this Table 2 that betterment in 
accuracy for almost all of the parameters is achieved with a three-layer structure.

Case 2: Tracking performance

The performances of the drive like its speed response at a constant load torque as well 
as its sudden change are simulated and shown in Figs. 8 and 9 respectively during the 

Table 1  ECPs evaluation using system models and physical tests

ECPs ECPs evaluated from models %Errors

PT test MR (with 
H-G 
diagram)

MP (with 
GD 
optimizer

MP (with 
ADAM 
optimizer

(PT-MR) (PT-MP) 
with GD

(PT-MP) 
with 
ADAM

Paper [20]

RS in Ω 1.85 1.85002 1.8501 1.85002 −0.001 −0.0054 0.001 0.0002

RR in Ω 1.84 1.840 1.83997 1.84 −0.00 0.0016 0.00 0.0001

XS/XR in Ω 53.38 53.3771 53.37742 53.40 0.0054 0.0048 0.0112 0.0396

LS or LR in 
mH

170 169.94 170.22 170.02 0.0054 0.0048 0.0112 0.0396

Lm in mH 160 159.952 159.968 160.01 0.03 0.02 0.0062 0.0086

Table 2  ECPs evaluation using 2 and 3 hidden layers

PT ECPs with two hidden layers ECPs with three hidden layers

GD AD Accuracy 
with GD 
(%)

Accuracy 
with AD 
(%)

GD Adam Accuracy 
with GD 
(%)

Accuracy 
with AD 
(%)

Rs 1.85 1.833 1.846 99.08 99.7 1.8501 1.85002 100 100

Rr 1.84 1.8239 1.836 99.125 99.78 1.83997 1.84 99.99 100

Ls/Lr 170 167.7 168.12 98.64 98.89 170.22 170.02 100.1 100.011

Lm 160 156.95 158.21 98.093 98.88 159.968 160.01 99.98 100.0625

τr 0.09239 0.09194 0.0915 99.51 99.03 0.092515 0.09240 100.135 100.01

ωr 147.0462 147.998 146.95 100.64 99.93 147.06 147.048 100.009 99.999

ωsl 9.9538 10.002 10.05 100.48 100.966 9.94 9.952 99.86 99.98
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running condition. It is evident from these Figs. 8 and 9 that the speed responses are 
similar both in their steady-state and transient conditions for all the BPANN methods.

Case 3: BPANN convergence

The convergence status for BPANN to evaluate the resistance of stator and rotor by using 
AD and GD methods is shown in Figs. 10 and 11, respectively. Figures 12 and 13 show 
the convergence graph of reactance Lr/Ls and Lm, respectively. Reaching the steady-state 
value is considered as the point of convergence. It is evident from these figures that the 
steady-state value is reached with AD at a faster rate than that with the GD method. This 
is the reason for which the AD method is adopted in this work.

Case 4: Rs estimation using SSI

The small ac signal of 1 V and 1 Hz is injected along with the A phase supply of Vs of 
240 V, 50 Hz, for estimating temperature effect on Rs. The FFT analysis, as shown in 
Fig. 14, of the A-phase feedback data confirms the presence of this 1 Hz signal injec-
tion. As per the proposed design, the only voltage sensor and one of the two current 
sensors are used in the A phase, the other one is placed either in the B or C phase. The 
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Fig. 8  Speed Response of IFOC VSI-IM drive with constant load
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Fig. 9  Speed Response of IFOC VSI-IM drive with a sudden change in load
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Convergence graph of Stator Resistance Rs
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Fig. 10  Convergence of BPANN based estimation of stator resistance Rs
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convolutions of Va and Ia with vrx and vry are used to demodulate the lock-in signals 
while DLPFs are used to extract Vssi and Issi for the estimation of the Rs. As stated in 
“Estimation of Rs using small signal injection method” section, this Rs estimation is 
done only during the δlc period of the lock-in signal and is refreshed with frequency f3. 
The motor temperature proportional values of Rs thus obtained are shown in Table 3 
and are assumed to remain constant during the refresh period of the lock-in signal. 
For this study, δlc is considered 1  s while the refresh rate is f3 = 0.1  Hz. The evalu-
ated resistances are shown at four different temperatures at T, (T + 10), (T + 20), and 
(T + 25) where T is the room temperature (25  °C). The same is also estimated using 

Number of iterations

Lm
in 
mH Graph obtained from Plant Model using GD Method

Graph obtained from Plant Model using Adam Method
Graph obtained from PT

Convergence graph of Mutual Reactance Lm

0 50 100 150 200 250 300
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164.5

Fig. 13  Convergence of BPANN based estimation of Lm with GD, ADAM methods

Fig. 14  FFT analysis (presence of 49 and 51 Hz) of received voltage after injection of Lock-in signal

Table 3  Rs estimation using SSI method at various temperatures

At °C Stator resistance Rs estimated Effect of Rs Change on other parameters

Using SSI Calculated value % error Rr Ls τr ωr Nr

T* 1.85002 1.85 0.001 1.84 0.1702 0.0925 147.0462 1404.9

(T + 10) 1.9208 1.9209 0.0052 1.91 0.1702 0.0891 146.711 1401.7

(T + 20) 1.991 1.9917 0.035 1.98 0.1702 0.0859 146.507 1339.75

(T + 25) 2.027 2.0271 0.0049 2.01 0.1702 0.08467 146.314 1397.91
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the positive temperature coefficient of stator winding λ is the (3.83 × 10–3/°C) [30] 
and the % error is evaluated for estimating the efficacy of the proposed SSI.

Case 5: Effect of resistance change

The effect of change in stator resistance on the other parameters of ECPs and speed is 
also shown in Table 3. It shows how the stator and rotor resistance and rotor time con-
stant τR change with temperature. The change in speed indicates that a correction in the 
firing pulse modulation index is essential otherwise the desired speed can’t be achieved. 
Besides, independent ECPs evaluation using two models at different temperatures is 
also shown in Table 4. Since Eqs. (17)–(21) and Eqs. (22)–(24) are utilized for ECPR and 
ECPP evaluation, the ECPs values evaluated using these two methods are different for 
variation in the motor temperature. But considering the running of the motor with fixed 
load torque, the mutual inductance value should not be changed with temperature. But 
remarkable change is observed in ECPs evaluation through the MR model. This suggests 
ECPs estimation with the H-G diagram method where temperature variation is consid-
ered is not suitable during the running of the motor. This also justifies the use of BPANN 
based plant model in this proposed design.

The changes in stator and rotor resistance and rotor time constant τR with tempera-
ture change are shown in Table 3. It is observed from the ECPs values in the Table 4 that 
the modulation index (MI) is needed to be changed to incorporate the effect of tempera-
ture changes. If the correction in the MI for this temperature change is not considered, 
a fluctuation in the developed torque i.e. torque ripple is observed. In other words, there 
is a fluctuation in the speed as observed in Fig. 15. The reason behind it is that due to 

Table 4  Variation in Lm evaluation using ECPR and ECPP with T 

The result written in bold is to highlight that at an elevated temperature the reference model based on H-G diagram fails to 
evaluate the Lm value properly

Parameters ECPR(T) ECPR(T+20) Parameters ECPP(T) ECPP(T+20)

Rs1 in Ω 1.85002 1.991 Rr in Ω 1.85001 1.991

Rr1 in Ω 1.840 1.9805 Rs in Ω 1.84 1.9805

LS1/Lr1 in mH 169.94 169.884 Ls/Lr in mH 170.02 170.02

Lm1 in mH 159.952 59.79 Lm in mH 160.01 160.01

Nr
In 
rpm

With change in MI
Without change in MI

0.010

Time in seconds

500

1000

1500

0
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Fig. 15  Speed variation without and with changing MI
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the increase in Rs with temperature rise, the developed torque, Te is reduced, following 
Eqs. 2 and 6, resulting in a momentary decrease in rotor speed and this error is corrected 
by the controller and a fluctuation in torque or speed be the result. The no fluctuation in 
speed is also observed for correction in MI. On the other hand, the change in stator cur-
rent Is with and without correction in the MI with the change in Rs is also observed from 
the Fig. 16. This justifies that a temperature correction is essential to avoid any ripple in 
the speed or developed torque of the motor.

Experimental results with MMU GUI

Case 6: Hardware controller with MMU system

A DSP-enabled digital signal controller (DSC) featured microcontroller (DSPI-
C33EP512MC502) with 70 MIPS-based control board is developed for this proposed 
motor drive system where SVM PWM trigger pulses are generated as per the proposed 
control algorithm along with the desired feedback signals. These pulses are utilized to 
control the IGBT-based 3 phase H bridge power hardware through its gate driver sys-
tem. The IGBT gate driver has also the facility to detect any abnormal operation of 
the drive for protection purposes. The entire controller logic is embedded within the 
firmware of this DSC to make it a standalone drive controller. The PWM is designed to 
operate at 5 kHz (or 200 µs period) and it is observed that the duration for ECPs genera-
tion following the above-discussed control algorithm is within 140–180 µs. This proves 
that the developed drive can be used for online controlling purposes. A snapshot of the 
developed hardware prototype is shown in Fig. 17. In addition, the values of the internal 
parameters are sent to a PC through serial communication at a speed of 115.2 kbps for 
their display in a customized GUI of MMU for monitoring and storage purposes. Some 
parameters, the nameplate data in particular for starting of the motor and the desired 
speed are sent to the controller from this GUI. A customized GUI-based MMU using 
visual basic is designed in such a way that it sends the machine nameplate data to the 
drive controller once these are fed. The controller then evaluates the equivalent param-
eters and re-transmits them to the PC for its display in the GUI as shown in Fig.  18. 
The MMU receives the sample values for motor terminal voltage and current, estimated 
speed, and measured temperature for their evaluation and display in the GUI. Besides, 
it is also able to display and store the ECPs of the motor as received from the hardware 
controller.

Is without change in MI

Is with change in MI

0

-30

30

0.010 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Time in seconds

0.010 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Time in seconds

Is in A

30

-30

0
Is in A

Fig. 16  Current ripple without and with changing MI
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The microcontroller acquires voltage and current signals through its inbuilt ADC 
and these data are also transmitted to the PC for monitoring purposes along with other 
parameter values. The MMU displays these normalized data as shown in Fig. 19 while 
it’s part (a) shows the voltage waveforms and part (b) is for current. The voltage and 
current data are acquired using voltage (VH1K0T02) and current (HE025T01) sensors 
respectively. As shown, the lock-in signal to be used to measure Rs is embedded within 
the acquired voltage or current signals. MMU also displays the estimated ECPs both 
from MP and MR models in its part (c) while its part (d) displays the measured values of 
voltage and current at an intermediate stage of speed change.

Case 7: ECPs estimation using drive controller

The ECPs values as evaluated by the hardware controller are communicated to the PC at 
a regular interval of 1 kHz once the training of the BPANN algorithm is completed. Out 
of all such values, Table 5 shows the ECPs values just after the completion of the train-
ing of BPAN along with the other values for comparison purposes. The ECPs data are 
obtained after taking the average of over 100 observations and accordingly appear very 

Fig. 17  Hardware prototype model of VSI-IM

Fig. 18  MMU of VSI-IM showing motor parameters
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close to the simulated values. The data for % error of this table justifies the avoidance of 
PT for the evaluation of ECPs.

Case 8: Sensorless Speed estimation

The speed of the motor is estimated without any speed sensor based on the ECPs of the 
motor during its running condition as well as feedback values of voltage and current fol-
lowing Eq. (52). The estimated speed is tabulated for a wide range of reference speeds in 
Table 6. The same is verified with the speed estimated using an optical sensor mounted 
on the rotor shaft of the motor, the waveform of which is shown in Fig. 20. The y axis of 
the figure here represents the amplitude of the signal obtained from the optical sensor 

(a) Voltage (Volt) –Time (in sec) (b) Current (Amp) –Time (in sec)

(c) Evaluated ECPs (d) Evaluated values from feedback data 

Fig. 19  Waveforms of sensor data for a voltage, b current, c evaluated ECPs and d evaluated values from 
feedback data as communicated to MMU

Table 5  ECPs obtained from the DSP-based controller

ECPs PT test ECPs evaluation by ECPs evaluation by

simulation using 
ADAM optimizer

% Error DSP Controller % Error

Rs in Ω 1.85 1.85002 0.001 1.85002 0.001

Rr in Ω 1.84 1.84 0.00 1.8401 0.054

Xs in Ω 53.38 53.386 0.0112 53.389 0.00168

Ls in mH 170 170.02 0.0112 170.028 0.00168

Lm in mH 160 160.01 0.0062 160.0112 0.0062
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and the x-axis represents the time. The % error is computed for both the sensored and 
sensorless methods and it is observed that the sensorless method is equally applicable 
for speed estimation. The optical sensor has a resolution such that one complete revolu-
tion produces 60 pulses.

Conclusion
This paper elaborates on the automatic estimation of ECPs during the starting transients 
and running conditions of an induction motor. The result from Tables 1 and 2 reveals 
that the proposed scheme avoids any physical tests of the motor and applicable to all 
rated motors. The speed tracking errors performance shown in Figs.  8 and 9 and the 
convergence criteria of ECPs evaluation as shown in Figs. 10, 11, 12 and 13 prove the 
efficacy of the proposed H-G and Adam-based BPANN schemes. The variation in Rs and 
its impact on other ECPs with motor temperature is also shown in Tables 3 and 4. An 
intelligent SSI for Rs and sensorless speed estimation methods are adopted to incorpo-
rate the temperature and speed error correction schemes. A hardware prototype along 
with a PC-based GUI is developed for its standalone operation as shown in Figs. 17 and 
18. The ripple in the torque or speed is reduced drastically with this BPANN controller 
as evident from Figs. 15 and 16. Thus the development of an intelligent controller for 

Table 6  Speed estimation by the proposed method

Reference speed 
(Nr*) in rpm

Speed estimated using 
proposed method (Nr1) in 
rpm

Speed evaluated by 
optical sensor (Nr2) in 
rpm

%Error (Nr–Nr1) %Error 
(Nr–Nr2)

400 399.86 400 0.035 0

600 600.2 601 −0.033 0.1

800 799.71 800 0.0.3 0

1000 1000.2 1000 0.02 0

1200 1199.5 1201 0.041 0.1

1400 1400.3 1400 −0.02 0

Fig. 20  MMU of VSI-IM showing speed
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induction motor drive with online parameter estimation and GUI-based display facility 
is described.

Abbreviations
AD	� Adam optimizer
AI	� Artificial intelligence
ANN	� Artificial neural network
ASD	� Adjustable speed drive
BPANN	� Backpropagation artificial neural network
CNN	� Convolution neural network
DLPF	� Digital low pass filter
DSP	� Digital signal processing
ECPP	� Equivalent circuit parameters obtained from plant model
ECPR	� Equivalent circuit parameters obtained from the reference model
ECPs	� Equivalent circuit parameters
EKF	� Extended Kalman’s filter
FLC	� Fuzzy logic controller
FOC	� Field-oriented control
GA	� Genetic algorithm
GD	� Gradient descent method
GNN	� Graphical neural networks
GSA	� Gravitational search algorithm
GUI	� Graphical user interface
IFOC	� Indirect field-oriented control
IM	� Induction motor
LPF	� Low pass filter
LSTM	� Long short term memory
MMU	� Machine monitoring unit
MRAS	� Model reference adaptive structure
NN	� Neural network
PSD	� Phase-sensitive detector
PSO	� Particle swarm optimization
PT	� Physical test
PWM	� Pulse width modulation
RNN	� Recurrent neural network
SSI	� Small signal injection method
SVM	� Space vector modulation
VSI	� Voltage source inverter

List of symbols
B	� Loss function
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f3	� Refresh rate in SSI
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K2	� Controller gain of the torque flow path
K3	� Controller gain of the slip frequency
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Lm	� Magnetizing inductance
Lr	� Rotor inductance
Ls	� Stator inductance
Lm1	� Mutual inductance of MR
Lr1	� Rotor inductance of MR
Ls1	� Stator inductance of MR
M	� Modulation index
m	� Momentum term in ADAM rule
MP	� Plant model
MR	� Reference model
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Nr	� Rated speed
p	� Number of poles
pf	� Power factor rated condition
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P	� Active power referred to the α-β
Q	� Reactive power referred to the α-β
Q1	� Reactive power in the d-q axis
Rc	� Core resistance
Rr	� Rotor resistance
Rr1	� Rotor resistance of MR
Rs	� Stator resistance
Rs1	� Stator resistance of MR
rn	� Summation of the squared term of gradients
r(t)	� Modulating signal of SSI
S	� Activation function
s	� Slip
sm	� Maximum slip
T	� Temperature at start
Te	� Electromechanical torque
Tpwm	� Time period of PWM
Tlc	� Period of lock-in signal in SSI
t1,t2,t0	� Switching instances of SPWM
Vs	� Rated stator voltage
Van, Vbn, Vcn	� Instantaneous phase voltages of VSI
vdc	� Dc supply voltage
vdr, vqr	� D-q axis rotor voltage
vdr, vqr	� D-q axis rotor voltage
vds

*, vqs
*	� Stator reference voltage in the d-q axis

vr	� Lock-in voltage
Vssi, issi	� Voltage and current of SSI method
vsvm	� Voltage vector of SVM
vα,vβ	� α-β Axis voltage
wn	� Current weight of nth iterations
w(n+1)	� Modified weight after nth iterations
Xm	� Magnetizing reactance
xvbdc, yvbdc	� Dc component voltage in-phase and quadrature component in SSI
Y	� Output of the forward path of MP
YMP	� Output ECPs for plant model
YMR	� Output ECPs for reference model
ZeqP	� Per phase impedance of MP
Zeq	� Per phase impedance
ZeqR	� Per phase impedance of MR
δ	� Tolerance limit
δlc	� Duty cycle in SSI
η	� Learning rate
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ψds, ψqs, ψqr, ψdr	� D-q axis flux
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