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Introduction
In the traditional systems, electricity theft  is the main source of non-technical losses 
(NTL). They are carried out majorly by physical tampering of the meters, billing manip-
ulations, poor revenue collection techniques, corrupt practices with internal staff usu-
ally involving lowering of bills, lack of accountability by the utility management, general 
commercial systems’ inefficiencies, etc. [1–4]. The introduction of digital prepaid meters 
to address the inaccuracies associated with the conventional metering system is hin-
dered by technical and operational issues [5–7] such as meter tampering, sales of fake or 
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unathorized prepaid vouchers, and other corrupt practices. Fortunately, the advent 
of highly sophisticated measurement, control, communication, and high computing 
schemes which birthed a revolutionised grid system known as smart grids (SG) offer the 
introduction of smart electricity meters (SEM) through advanced metering infrastruc-
ture (AMI). SG necessitate a broad acquisition and analysis of data for efficient manage-
ment and operations of power systems [8–10].

AMI offer efficient metering allowing a two-way interaction between the utility pro-
vider and the consumers. The capability of AMI to record and transmit real-time 
consumption data, real-time pricing, and flexible control commands have made the 
implementation of AMI a key aspect of SG. This lays a positive landmark for the mitiga-
tion of NTL [11]. The AMI help to curb physical meter tampering, meter theft, meter 
swapping, estimated billing irregularities, meter bypass, sales of fake prepaid vouchers 
[12–20], and other physical manipulations for electricity thefts. It is also equipped with 
improved protective measures offering intrusion monitoring for secured communica-
tion links [21]. However, a key security risk in the form of cyber-attacks poses daring 
challenges to the deployment of SEM in AMI despite its potential advantages as smart 
technologies continue to face cyber-attacks by adversaries. This is due to the vulnerabil-
ity of the communication links exposing the system to attacks by adversaries by possible 
manipulations for various motives [22–26]. These vulnerabilities in AMI are report-
edly being exploited for electricity thefts [12, 19, 27–30]. Where physical connections 
to the meter itself are manipulated in the conventional meters, SEM data are subject to 
manipulations by software-based attacks [27, 28, 31–36], etc. Thus, making the security 
of AMI a necessity for every utility.

Electricity thefts remain a major concern to the deployment of AMI as huge losses 
are reportedly incurred worldwide in addition to the increasing reports of cyber threats 
[28, 37]. Despite the relief presented by AMI, a new dimension of threats posing unique 
challenges to the detection of NTL necessitate the need for the development of robust 
techniques for a timely identification and elimination of threats [12, 28, 35]. Although 
the AMI is faced with increased threats, they provide adequate data from the installed 
sensors for useful analytics and inferences for various decision supports. Moreover, the 
monitoring of customers’ consumption data and other control measures can be achieved 
via the AMI as it interconnects and communicates data with customers, utilities, and 
third parties [28, 38–42]. Reported algorithms utilizing energy consumption data are yet 
to substantially consider real-time monitoring of other parameters of the AMI which 
are indicative of electricity thefts. Moreover, existing approaches often consider a gen-
eral practice of evaluating a common threshold for determining energy theft despite the 
stochasticity of individual consumption data. Therefore, the need for a consumer-based 
preventive model relying on the selection of real-time monitoring parameters which are 
indicative of electricity thefts. These parameters equally offer suitable decision support 
for a stochastic time-series data as those of SEM.

This work presents an electricity theft prevention scheme for the AMI utilizing elec-
tricity thefts’ indicative parameters which are suitable for a real-time monitoring. The 
AMI network is sectioned into zones and each zone is effectively monitored based on 
defined compromised and uncompromised states scenarios. Security risks are defined 
for each of the scenarios and translated into rules which are further implemented using a 
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fuzzy inference system. Next, section II discusses the report of some related works while 
Section III presents the methodology of the model formulations. Section IV discusses 
the results of the developed model with implemented prevention scheme and section V 
concludes the study.

Related works
The securities of AMI have been a major concern particularly on the threats posed via 
cyber-attacks as have been demonstrated in many studies [19, 21, 43–52]. However, 
AMI offers a reliable and secured platform which are leveraged for curbing electricity 
thefts. This is achieved by its many interconnected sensors which make the SEM record 
zero reading and transmit same to utility system by utilizing the powerline communica-
tion medium [53]. The background of AMI and the major security requirements were 
discussed by Jiang [28] while presenting an attack model to describe energy theft behav-
iour aimed at timely detection of malicious activities. The study by Singh [54], Jiang [28], 
Mohassel [55], Jokar [56], Jokar [12] McLaughlin [57], Shekari [58], and many others 
reveal that AMI attacks are launched mostly at the communication channel to transmit 
falsified data which could be aimed at committing frauds. Consequently, the susceptibil-
ity of the AMI communication channel to cyber-attacks necessitated increased research 
in the cyber-related studies. Shuaib [41] posited how Denial of Service and Man-in-
the-middle attacks could be exploited in local area network (LAN) to launch a cache 
of attacks to corrupt SEM via the address resolution protocol. These attacks could crip-
ple the systems’ functions by interrupting its communication with other network hosts. 
Once corrupted, these data represent false data which could be manipulated to cause 
evasion of bill payments and false estimated values of state variables [59–62]. Several 
studies revealed increased attention is being paid to ascertaining the impact on state 
estimations of measurements by grid sensors and how these injected attacks can be used 
to launch coordinated attacks [63–67].

Liu [68] examines how false data injection (FDI) attacks affect state estimations in 
power grid. He reported that intrusions could be observed from the sensors due to 
cyber-attacks but proposes the monitoring of the state estimates could help check intru-
sions. The state estimations of redundant sensor measurements and network topology 
information are used to determine the state of grid system and could also be adapted 
by appropriate modelling to detect malicious measurements [69]. The study by Lo and 
Ansari [70] presented a state-based estimation of grid sensor placement algorithm for a 
consumer attack model aimed at improving the intrusion detection accuracy and observ-
ability. Liang [67] in their studies, while highlighting the economic and physical impacts 
of emerging FDI attacks on modern power systems, discussed the basic approaches of 
launching a successful FDI attack with future directions hampering on improved secu-
rity monitoring. Kallitsis [71] proposed an adaptive procedure to test data attack com-
bined methods to avoid possible wrong grid-state estimates. Bi and Zhang [72] had 
attempted a prevention scheme to secure the state estimation from being compromised, 
by proposing a graph theoretic approach to construct an optimal set of meter measure-
ments. Addressing the problem from a different angle, a semi-definite programming was 
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proposed by Su [73] to solve the state estimation problem for detecting and confirming 
electricity theft cases.

Khoo and Cheng [74] proposed a radio-frequency identification technology to 
detect the presence of malicious consumers’ energy consumptions data for elec-
tricity theft prevention. Using an IoT scheme, Meanwhile, Xiao [75] developed a 
mutual inspection strategy for the discovery of compromised meters. In the study by 
McLaughlin et al. [76], an AMI intrusion detection utilising information fusion com-
bining sensors’ status and consumption data was proposed for energy theft detection. 
Atif [77] developed a multi-layered threat model and analysis based on evaluation 
metrics of cyber-physical systems’ vulnerability. The study by Liu [78] demonstrated 
that electricity theft could be committed by exploiting the multiple pricing schemes 
offered by the AMI. The study analysed multiple pricing schemes and the related 
threats while proposing an attack model and countermeasures for enhanced protec-
tion. In another study, Ballal, Suryawanshi [79] proposed an online-based electric-
ity theft prevention using programmable logic control to detect pilferage locations. 
However, the work is mainly directed at detecting direct tapping on the power lines. 
A periodicity analysis employing an autocorrelation function was performed to deter-
mine candidate periods from a Fast Fourier Transform-generated periodogram [80]. 
With the aid of selected machine learning models, the obtained result was further 
analysed for electricity theft detection. For SG application, theft must be prevented 
within the possible shortest time, but, time was not of key essence in the developed 
model. In a seemingly related approach, Jaiswal and Ballal [81] present a real-time 
electricity theft detection based on a fuzzy inference system to prevent hook-line 
activity on a power line. Nevertheless, traditionally, tampering is catered for in a typi-
cal SG, and therefore, does not require metering data to confirm. In another dimen-
sion, a penalization scheme for electricity thefts in AMI has been presented [82].

A lot of research works have been submitted bordering on the attempts to either 
detect or prevent electricity frauds but only a few are directed at AMI. Nonetheless, 
most works concentrate on utilization of the energy consumption profile while few 
other works are directed at building hardware systems for electricity theft prevention 
or detection. In addition, some of the presented techniques utilising state-based hard-
ware designs are offered at extra costs and not suitable for a typical AMI network. 
Moreover, a breach of any of the identified security requirements or source of threats 
to AMI aimed at committing electricity thefts is manifested by known indications of 
thefts. The profile or the state of such indicators of electricity theft in AMI could be 
modelled for improved monitoring to aid necessary actions for the prevention of elec-
tricity thefts. The parameters, indicative of electricity thefts, have been discussed in 
[78, 83, 84] to include positive intrusion status, false signature on SEM data, erratic 
outage notification, de-energised or SEM outage, timestamp status, false pricing, 
flagged observer meter status, etc. Furthermore, they could be manifested in form of 
false estimation status, irregular or anomalous consumption profile, false timestamp, 
alteration of the billing information or false pricing regime, etc., depending on the 
intent of the attackers. Therefore, SEM are considered compromised depending on 
the inferences drawn based on the status of the monitored electricity thefts’ indicative 
parameters which can be selected for modelling as presented in this research. Next 
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is the problem formulation of the adopted methodology for the proposed scenario-
based modelling.

Methodology
To select the modelled parameters analysed in this work, a simplified AMI network is 
first presented. This simplified AMI network is considered analogous to the protection 
scheme of any given power systems. A number of consumers are connected to this net-
work and then subdivided into protection zones. The zoning is achieved by grouping 
consumers in given locations with peculiar parameters modelled based on set rules to 
effectively help monitor and prevent electricity thefts in that zone. Then, an architecture 
for monitoring the consumers in each zone is developed. Four parameters indicative 
of electricity thefts are then selected and modelled with developed rules based on the 
defined states before being implemented using a fuzzy inference system (FIS).

Simplified AMI scheme for electricity thefts monitoring

In this scheme, SEM in a distribution network are considered segregated based on a 
neighbourhood comprising of different zones. Each zone represents a group of con-
sumers while assuming the considerations of some arbitrary number of factors which 
include.

•	 Number of consumers in the neighbourhood under study.
•	 Type of consumers and their load consumption level.
•	 Intuitively estimated integrity of the consumers (based on previous electricity theft 

records).
•	 Ease of tracking and arresting of fraudulent consumers etc.

Figure 1 is the developed zones for a typical AMI monitoring of a neighbourhood net-
work comprising n consumers. It is a random model which is not drawn to scale based 
on the factors mentioned above but basically to convey the segregation model. This sec-
tioning will particularly offer the advantage of the ease of monitoring as the uncertainties 
are assumed to be reduced in such networks. In each of the identified zones, selected key 

Fig. 1  A representative protection zones for monitored SEMs in a neighbourhood
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network parameters of all the SEM are modelled for identification of possible compromise. 
Figure 2a represents the architecture of the proposed monitoring scheme in a protected 
zone. As shown in the figure, a central observer is connected to record the consumption 
of all SEM as well as monitor the respective protection zone. Furthermore, each consumer 
communicates with the AMI via the SEM. Figure 2b gives a clearer scenario of the pro-
posed architecture for any given zone. Next, the parameters to be monitored are selected 
and modelled.

Selection and modelling of the monitored parameters

This study preselects the intrusion detection status of each zone ( α ), timestamp error of 
the SEM readings ( β ), real-time pricing error ( γ ), and the central observer meter status of 
each zone ( δ ) for monitoring. In this model, each compromised state is set to ‘High’ while 
the uncompromised state is set to ‘Low’. The intrusion status, α is “High” when intrusion is 
detected and “Low” for cases of no intrusion at the given timestep. α is the direct output of 
the applied intrusion prevention or detection scheme being provided as in-built or addi-
tional mechanisms for primary protection of the SEM. First, the timestep ( τ ) is set as the 
period for which the states of all the monitored parameters are evaluated at timestamp ( T  ) 
according to Eq. (1).

Fig. 2  a A typical architecture of the proposed monitoring scheme for identified zones in a neighbourhood. 
b A typical architecture of the proposed monitoring scheme for customers in a Zone
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where Tτ is the timestamp at the current timestep of evaluation, Tτ−1 , the previous 
timestamp just before the current timestep of evaluation and Td , the difference between 
the two timestamps. Td must be constant at every timestep of evaluation for uncompro-
mised states. Therefore, error is flagged when these values give inconsistent value of Td . 
The timestamp error, β is evaluated using Eq. (2). β determines the error in the moni-
tored timestamps and signals “High” for any inconsistency in the reported time interval 
within a given timestep and “Low” for normal timestamps.

γ represents the deviation from the set real-time pricing by the utility to what each SEM 
reflects. Let p1,1 , p1,2 , p1,3,…, p1,τ ; p2,1 , p2,2 , p2,3 , …, p2,τ ; p3,1 , p3,2 , p3,3,…, p3,τ ; …; and 
pn,1 , pn,2 , pn,3 …, pn,τ be the instantaneous real-time pricing for customers 1, 2, 3 to n 
applied to the neighbourhood at timesteps 1, 2, 3 to τ, respectively. As presented in a 
previous work [83], the real-time pricing for each of the SEM can be authenticated based 
on Eqs. (3) to (5). Note that for a given neighbourhood, different pricing schemes may 
apply to different customers depending on the type of customers and other flexible ser-
vice schemes available in the SG regime. However, in this work, Eq. (3) is formulated to 
ensure constant monitoring of the pricing regime among customers in a zone with the 
assumption that all customers in a zone are subjected to an equal tariff plan at any given 
timestep. Equation (3) shows that the state scenario of a customer’s pricing regime can 
be used as a check on other customers within the same zone. Equation  (4) compares 
any given customer’s pricing regime with the set value by the utility at any τ where pu,τ 
denotes the billing as set by the utility at timestep τ. To monitor deviation in the applied 
price regime to each of the customers’ SEM, Eq.  (5) is formulated to define the state 
for both compromised and uncompromised states by constantly comparing the price 
regimes at utility and customer ends. When a customer’s pricing information is at equal 
state as the applied pricing by the utility, there is no suspected compromise, and the 
state “Low” is assumed, otherwise, the state “High” is assumed.

The inclusion of the central observer meter as provided in Fig. 2 is to provide for a 
real-time monitoring of all SEM in the monitored zone to determine possible abnormal 
deviations. The deviations in the recorded energy consumption data of each of the SEM 
are modelled by comparing recorded values of the central observer meter with those of 
the SEM in a zone. At any given timestep, energy recorded by the observer meter, EOb 

(1)Tτ − Tτ−1 = Td

(2)β =

{

Low, �Td = 0
High, �Td �= 0

(3)
∑

τ

p1,τ =
∑

τ

p2,τ =
∑

τ

p3,τ =, · · · ,=
∑

τ

pn,τ

(4)
∑

τ

pn,τ =
∑

τ

pu,τ

(5)γ =

{

Low, pu,τ = pn,τ
High, pu,τ �= pn,τ
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and the energy recorded by all SEM in the given zone, ESEM , are monitored to deter-
mine possible compromise in each zone. Compromised or uncompromised state of 
the observer meter, δ , is modelled based on the value of k as given in Eq. (6) where k is 
the assumed maximum allowable unaccounted losses in a zone due to possible error in 
the estimation of technical losses (TL). This means the difference between the supplied 
energy to a zone and the reported consumption by all SEM must not be greater than k , 
in consideration of the TL for all uncompromised scenarios.

Defining the rules

Having selected and modelled the parameters to be monitored, the rules are then 
defined for the security risks based on all possible states for each of the parameters to 
enable efficient implementation of the monitoring scheme. To define the security risks, 
the following rules are formulated:

	 i.	 A compromise of a monitored parameter does not translate to electricity theft as 
such could potentially be a false alarm, however, it is enough an important indica-
tor of possible theft scenario.

	 ii.	 A compromised parameter is defined to mean a “Low” security risk, two param-
eters for a “Medium” risk and compromise of all three parameters at a given sce-
nario to mean a “High” security risk for α , β , and γ while a “Normal” security risk 
is defined when none of the parameters is reportedly compromised. Table 1 shows 
the defined set rules for the scenarios.

	iii.	 The observer meter status, δ , is set to highest priority over other monitored param-
eters. This is because any reflection of imbalance from the measurements of all the 
monitored SEM within the zone indicates a severe threat.

Using Eq.  (4), Table  1 is then updated to Table  2 with δ where the state of other 
parameters remains unchanged when at state “Low” while other rules are as captured  

(6)δ =

{

Low, EOb −
∑

ESEM ≤ k
High, EOb −

∑

ESEM > k

Table 1  Defined rules for α , β , and γ scenarios, and the security risks

Scenarios Defined rules for the security risk model

If Then

α β γ Security risk

1 Low Low Low Normal

2 Low Low High Low

3 Low High Low Low

4 Low High High Medium

5 High Low Low Low

6 High Low High Medium

7 High High Low Medium

8 High High High High
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in Table  2. The status of all the monitored parameters by utilizing the set rules are 
achieved based on the developed pseudocode of Table 3. This is implemented using FIS.

Developed input–output model and the fuzzy sets for electricity theft prevention

The set rules and algorithm developed in Tables 2 and 3 are implemented by FIS using 
MATLAB R2019b. Figure 3 shows the developed input and output layout utilising the 
popular Mamdani model. The Mamdani model is chosen because it offers easier and 

Table 2  Updated rules for the scenarios of all the monitored parameters

Scenarios Defined rules for the security risk model

If Then

α β γ δ Security risk

1 Low Low Low Low Normal

2 Low Low Low High Low

3 Low Low High Low Low

4 Low Low High High High

5 Low High Low Low Low

6 Low High Low High High

7 Low High High Low Medium

8 Low High High High High

9 High Low Low Low Low

10 High Low Low High High

11 High Low High Low Medium

12 High Low High High High

13 High High Low Low Medium

14 High High Low High High

15 High High High Low High

16 High High High High Very High

Table 3  Developed pseudocode for implementing the scenario model
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more instinctive implementation of rules as it is better suited for the development of 
expert  systems based on expert knowledge as presented in this study. Triangular and 
trapezoidal membership functions were defined for the input “Low” and “High”, respec-
tively. Although no specific membership function is prescribed for any event, every 
human-expert system requires a fundamental understanding and possibly some trial-
and-error approach, as was followed in this model. Table 4 shows the fuzzy set defined 
for the input and output. 

Developed electricity theft prevention model based on the implemented rules

The developed electricity theft prevention model implemented based on utilisation of 
the results of the FIS model for all modelled scenarios is given in Fig. 4. Decisions on 
monitored parameters are evaluated at every timestep and are firmly based on Fig.  4. 
If there is any risk (defined to be the “High” or “Very High” states), an attempt is made 
to automatically clear the threat before electricity theft is significantly committed. This 
adequately improves the self-healing function of the AMI. Such compromised state may 
necessitate further assessment or action to secure the system usually by subjecting com-
promised SEM to further analysis depending on if the self-healing is not able to restore 
the system. As shown in the developed model, further analysis may be required where 
automated action becomes inadequate to clear suspicious status.

Fig. 3  Input–output layout of the developed model

Table 4  Defined fuzzy sets for the input and output membership functions

Defined state level Membership function Fuzzy sets

Input

Low Triangular [0 0.3 0.5]

High Trapezoidal [0.3 0.5 0.7 1]

Output

Normal Trapezoidal [0 0.05 0.1 0.2]

Low Trapezoidal [0.1 0.2 0.3 0.4]

Medium Trapezoidal [0.3 0.4 0.5 0.6]

High Trapezoidal [0.5 0.6 0.7 0.8]

Very high Trapezoidal [0.7 0.8 0.9 1]
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Results and discussion
The result of the developed model is as given in Fig. 5 at 50% weight of each of the 
modelled parameters. The result is determined by the selecting a monitored param-
eter with interdependencies on at least, one other parameter with respect to the 

Fig. 4  Developed electricity theft prevention model

Fig. 5  Rules implementation of the FIS-based prevention model
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security level. These models are as shown in form of the velocity vectors of Fig.  6 
through Fig.  11. Figures  6, 7 and 8 show that where observer meter reading error 
is not significant, threats are high, but covers densely in both dimensions with the 
observer meter error significant as replicated in Figs. 9, 10 and 11. These dense veloc-
ity behaviours depict the importance given to the state of the observer meter read-
ing. The quiver or velocity plots give clear indications of the modelled parameters 
and their interactions in the determination of risks. Sometimes, errors could be due 
to a faulty sensor, and the output of the quiver plot comes in handy to help the opera-
tor make a desired decision. This evaluation is carried out at every set timestep, τ 
and is selected to be as short as to allow the prevention scheme to act before any 
significant loss is incurred in cases of compromise. τ is to be effectively determined 
by the utility. τ can be chosen to be as low as every minute but to allow for proper 

Fig. 6  Model dependency α and β on the security risk

Fig. 7  Model dependency α and γ on the security risk
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and unexaggerated period of monitoring, it should be in a few hours cycle, although 
the choice of τ significantly depends on the operational planning of the utility. This 
scheme offers an improved level of security for a typical AMI. This work presents a 
new dimension in the studies of electricity theft prevention in AMI as this is the first 
approach of modelling selected electricity theft indicative parameters. The main con-
tribution of this paper is the provision of enhanced monitoring measures for AMI 
to help prevent electricity theft. If implemented, the selected state parameters offer 
adequate enhancement on the security architecture of the AMI.      

Conclusion
Prevention of electricity thefts in AMI is a key aspect of SG implementation. To pre-
vent possible electricity theft in AMI, this study provided a novel rule-based design to 
model selected parameters indicative of electricity thefts. The parameters were modelled 
based on a set of rules for various scenarios to define security risks before applying a 

Fig. 8  Model dependency γ and β on the security risk

Fig. 9  Model dependency of δ and α security risk
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rule-based technique utilizing FIS model. The results show that the monitored parame-
ters allow for easy identification of compromised scenarios indicated by the dense area of 
the quiver plots. Enhancement in the monitoring scheme of AMI is achieved and serves 
as an additional layer to its security architecture. This scheme, implementable in smart 
utility networks, offers a simplified AMI with divisions into zones for ease of monitoring 
while providing increased security by monitoring selected and modelled parameters for 
prompt response in the prevention of electricity thefts. Further works may incorporate 
more indicative parameters to offer enhanced security and could also involve a real-time 
monitoring of the energy consumption. Artificial intelligence techniques could also be 
explored to develop enhanced robust techniques based on data from the installed sen-
sors on AMI.

Abbreviations
AMI: Advanced metering infrastructure; FDI: False data injection; FIS: Fuzzy inference system; NTL: Non-technical losses; 
SEM: Smart electricity meter; SG: Smart grids.

Fig. 10  Model dependency of δ and γ on the security risk

Fig. 11  Model dependency of δ and β on the security risk
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