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Introduction
This paper is an enhanced and updated version of conference paper [1]. Forecasting 
is a critical requirement for planning, in all facets of human life. Forecasts of all kinds 
hinge on available data. Whereas some data are amenable to forecasting, others have 
high levels of uncertainty which present challenges to forecast models. In recent times, 
the grey system model GM(1,1) has gained popularity as a forecasting model capable of 
dealing with uncertainties associated with available data for forecasting [2]. It is noted to 
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An improvement of the traditional grey system model, GM(1,1), to enhance forecast 
accuracy, has been realized using the particle swarm optimization (PSO) algorithm. 
Unlike the GM(1,1) which uses a fixed adjacent neighbor weight for all data sets, 
the proposed PSO-improved model, PSO-GM(1,1), determines an optimal adjacent 
neighbor weight, based on the presented data set. This optimal adjacent neighbor 
weight so determined is the principal factor that enhances forecast accuracy. The 
performance of the proposed model was evaluated using generated monotonic 
increasing and decreasing data sets as well as measured energy consumption data for 
a laptop computer, desktop computer, printer, and photocopier. The performance of 
PSO-GM(1,1) was compared with that of GM(1,1), and two other models in literature 
that sought to improve the performance of GM(1,1). The PSO-GM(1,1) outperformed 
the traditional model and the two other models. For the monotonic increasing data, 
the mean absolute percentage error (MAPE) for the proposed model was 0.007% as 
against a MAPE value of 20.383% for the GM(1,1). For the monotonic decreasing data, 
the PSO-GM(1,1) again outperformed GM(1,1), yielding a MAPE of 0.057% compared 
to a value of 13.407% for the traditional model. For the measured laptop computer 
energy data, the obtained MAPE for the PSO-GM(1,1) was 0.675% while the values for 
the two models were 4.052% and 2.991%. For the measured desktop computer energy 
data, the obtained MAPE for the PSO-GM(1,1) was 0.0018% while the values for the two 
models were 0.0018% and 1.163%. For the data associated with the printer, the MAPEs 
were 8.414% for the PSO-GM(1,1), 20.957% for the first model and 9.080% for the 
second model. For the measured photocopier energy data, the obtained MAPE for the 
PSO-GM(1,1) was 0.901% while the values for the two models were 3.799% and 0.943%. 
Thus, the proposed PSO-GM(1,1) greatly improves forecast accuracy and is recom-
mended for adoption, for forecasting.
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be computational efficient and can deal with systems that have limited data samples and 
poor information [2–4].

Statistical models for forecasting need a high number of data samples, and several 
assumptions [5]. However, the data for many systems do not obey statistical rules [6]. 
Computational intelligent models also require a high volume of training data that are 
largely not available [7]. On the other hand, the GM(1,1) overcomes the inherent defi-
ciencies of statistical and computational intelligent methods and accurately makes fore-
casts using limited, incomplete and uncertain data.

However, GM(1, 1) has shortcomings that adversely impact on its performance [8]. It 
therefore requires additional algorithms to enhance its performance [9–13]. Researchers 
have therefore pursued the development of new algorithms to enhance its performance.

The identified areas of optimization in GM(1,1) are [7–14]: (1) the neglect of the first 
entry in the prediction, which reduces the data utilization efficiency, (2) deficiencies in 
arriving at optimal background values and (3) determining the initial condition in the 
model’s time response function.

The work in [10] stresses the fact that the background value (BV) is the principal ele-
ment that determines the accuracy of the model. The BV is produced using adjacent 
neighbor weight (ANW) or coefficient that is normally set to 0.5. This suggests that adja-
cent two-time series data have equal impact on the model. However, a data sample may 
be biased towards the left or right. Hence, to improve forecast accuracy, it is necessary to 
accurately generate the BV using weights that consider the nature of data samples. This 
need is yet to be addressed in literature.

To contribute to address this need, this work uses the PSO to find optimal ANWs to 
produce optimal BVs. The optimal ANWs will not be fixed, but dependent on the nature 
of the data samples. The proposed method will understand the progression of data 
samples to produce optimal ANWs to enhance forecast accuracy. The proposed PSO-
GM(1,1) outperforms GM(1,1) and other methods in literature.

The paper is sectioned as follows: “Methods” section describes the methods used. In 
“Traditional grey system model” section, GM(1,1) is explained. The PSO is explained in 
“Particle swarm optimization” section. “Proposed PSO-GM(1,1)” section outlines the 
proposed PSO-GM(1,1). The approach for testing is outlined in “Approach for testing” 
section. “Results and discussion” section analysis and discusses the test results. Conclu-
sions drawn are summarized in “Conclusion” section.

Methods
The study sought to enhance the forecast accuracy of GM(1,1). To achieve this, GM(1,1) 
was studied to understand its operation and identify aspects that can be enhanced to 
maximize its forecast performance. Having identified aspects of the model that can be 
enhanced, an appropriate tool for realizing the enhancements was found. The tool was 
then studied to gain full understanding of its operations. Following this, the needed 
enhancements to the GM(1,1) were made. Data sets were then generated to test the 
effectiveness of the enhancements made and to compare the enhanced model’s per-
formance with the traditional model and other models in literature that offer some 
improvements to the GM(1,1). The data sets were monotonic increasing and monotonic 
decreasing data sets generated using appropriate mathematical equations. Additionally, 
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data were produced by monitoring the energy consumption of a laptop computer, desk-
top computer, printer, and photocopier. The energy consumptions of the plug loads were 
monitored using a smart plug (Energenie MIHO005 Adaptor Plus).

Traditional grey system model
Given a non-negative sequence of raw data X (0)(k) , given as [15, 16]:

the accumulated generated sequence, X (1)(k) is given as

where

Thus, X (1)(1) = X (0)(1).

The calculated background value, Z(1)(k) , is given as

The basic form of the first order model GM (1,1) is given by the following:

where a is the development coefficient and m is the grey action quantity.
From (4), the whitenization equation of the model GM (1,1) is given as

The coefficients a and m can be obtained as follows:

where

If the time response solution of the whitenization equation is given by the following:
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)

(2)X (1)(k) =
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then, the time response of the sequence of GM (1,1) can be obtained using (8)

Therefore, the predicted values can be found using

Thus,

Particle swarm optimization
PSO is a widely used optimization algorithm in engineering [17]. It mimics the social 
behavior of animals. In PSO, every individual solution is viewed as a particle. Each solution 
(particle) is given a solution number, say (i). A swarm is created when solutions are com-
bined. The technique initializes the position of each solution, in addition to other constants. 
This is defined by a coordinate in n-dimensional space into the problem (objective or fitness 
function) to be optimized. Each solution remembers its own previous best position (Pbest) 
and the best position of the entire swarm (Gbest). Each solution then alters its position by 
updating its velocity until the optimal solution is found [17].

Proposed PSO‑GM(1,1)
The performance of GM(1,1) has been enhanced by using PSO, to find an optimal value 
for adjacent neighbor weight (ANW) that will optimally construct the background value, 
Z(1)(k) . Let (11) be the modification of (3), in line with the proposed method, to obtain the 
ANW.

In (11), p is the ANW. The parameters BTB and BTY  needed to find the development 
coefficient, a, and the grey action quantity, m, in (6) can be further determined as follows:

Therefore,

(8)X̂ (1)(k + 1) =
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a
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Hence, substituting for a and m in (10)

Thus, to accurately determine X̂ (0)(k + 1) , accurate values of Z(1)(k) must be found. 
Moreover, the accuracy of Z(1)(k) , depends on the optimality of the value of p. This work 
therefore focuses on optimally determining the value of p to produce accurate values of 
X̂ (0)(k + 1) . The optimal value for p, is determined using the PSO. This is achieved by 
minimizing the sum of squared errors associated with the forecast.

For data X (0)(k) , forecasted as X̂ (0)(k + 1) , the forecast error, Ek , is given by the 
following:

The sum of squared errors, E, is given as

Let the fitness function, f, of the PSO be the sum of squared error of GM(1,1). Thus,

Thus, PSO’s task is to find the optimal value of p that makes the sum of squared errors 
equal to zero. In applying PSO, for this work, particle (i) refers to the possible values for 
p, in (11). The values for p range from 0 to 1. The position ( Xi(p)(t) ) refers to the solution 
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value that p takes and the velocity ( Vi(p)(t) ) refers to the rate at which the current value 
of p moves towards the optimal value. Each value or position runs through the objective 
function in (18) to find the fitness values. After each iteration, the best position or value 
so far ( Pibest(p) ) is chosen for each particle. Also, the best position for all the particles 
( Gbest(p) ) is chosen. These values together with two random values r1 and r2, and two 
learning constants c1 and c2 are used to update the velocity Vi(p)(t + 1) ) as shown in (19) 
and then the new position, using (20). These steps are continued until a stopping crite-
rion, which could be the total number of iterations, is met.

w is the inertia weight factor,
Vi(p)(t) is the initial (or previous) velocity vector,
Pibest(p) is the personal best position of particle i,
Gbest(p) is the global best in the entire swarm,
Xi(p)(t) is the current position of particle i and
Xi(p)(t + 1) is the updated position of particle i.

Figure 1 shows the flowchart for the proposed PSO-improved grey model. The opera-
tion of the improved model is outlined as follows:

1.	 Initialize PSO parameters (w, r1, r2, c1, and c2) and assume a set of values for p. At this 
stage, each assumed value of p is considered as a personal best solution, pending the 
determination of the global best solution, after an iteration.

2.	 Evaluate objective function in (18).
3.	 Update each solution’s personal best ( Pibest(p)).
4.	 Update the global best ( Gbest(p)).
5.	 Update each solution’s velocity ( Vi(p)(t + 1) ) using (19).
6.	 Update each solution’s position ( Xi(p)(t) ) using (20).
7.	 Choose the best solution of p, as the optimal ANW,poptimal , when the maximum 

iteration is attained.
8.	 Update the background value in (11) using the optimal adjacent neighbor weight 

( poptimal).
9.	 Perform forecast and display results.

Approach for testing
The performance of the PSO-GM(1,1) was assessed using six data sets. Two of the six 
data sets were randomly generated monotonic increasing and decreasing data. The 
monotonic increasing data set was generated using (21) while the monotonic decreasing 
data set was produced using (22). This approach to data generation was borrowed from 

(19)Vi(p)(t + 1) = wVi(p)(t)+ r1c1
(

Pibest(p) − Xi(p)(t)
)

+ r2c2
(

Gbest(p) − Xi(p)(t)
)

(20)Xi(p)(t + 1) = Xi(p)(t)+ Vi(p)(t + 1)
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[18, 19]. The generated monotonic data sets were used to compare the forecast accuracy 
of the developed PSO-GM(1,1) and GM(1,1).

(21)X(t) = 2et , t = 1, 2, ..., n

(22)X(t) = 8e−t , t = 1, 2, ..., n

Start

Initialize the parameters 
of PSO

Evaluate objective 
function

Update Pbest

Update Gbest

Update velocity and position 
using (19) and (20)

Is stopping criteria met?

Display optimal adjacent 
neighbour weight

Modify adjacent neighbour 
mean in (11)

Perform Grey system 
modeling using modified 
adjacent neighbour mean

Display forecasted 
results

End

No

Yes

Fig. 1  Flowchart of PSO-GM(1,1)
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The third, fourth, fifth and sixth data sets were measured weekly energy consumptions 
of a laptop computer, desktop computer, printer, and photocopier. The energy consump-
tions were measured using Energenie MIHO005 Adaptors [20]. These data sets were 
used to further evaluate the forecast accuracy of the technique and to compare it with 
GM(1,1) and two other models presented in [18, 19]. The method in [18] modifies the 
background value of GM(1,1) while that in [19] modifies the initial condition of GM(1,1).

The mean absolute percentage error (MAPE) index was employed to assess the overall 
performances of the models. The lower the MAPE, the higher the accuracy of the model, 
and vice versa. With the percentage forecast error,Ek , given by (23), the MAPE is deter-
mined using (24).

X (0)(k) is the original value and X̂ (0)(k + 1) is the forecasted value.

Results and discussion
Figure 2 presents the prediction results for a monotonic increasing data, using GM(1,1) 
and that using the proposed improved grey model (i.e., PSO-GM(1,1)). The figure shows 
the actual monotonic increasing data and the corresponding values predicted by the 
PSO-GM(1,1) and the GM(1,1). For this data set, the optimal adjacent neighbor weight 
was determined, using the PSO-GM(1,1), to be 0.418, instead of the constant value of 
0.5 used by GM(1,1). It is noted from Fig. 2 that the values outputted by PSO-GM(1,1) 
near perfectly matches the actual data (the plot for PSO-GM(1,1) has even covered that 

(23)Ek =
X (0)(k)− X̂ (0)(k + 1)

X (0)(k)
× 100

(24)MAPE =
1

N

∑

[

X (0)(k)− X̂ (0)(k + 1)

X (0)(k)

]

× 100

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6

Actual data PSO-GM(1,1) GM(1,1)
Fig. 2  Performance comparison of PSO-GM(1,1) and GM(1,1) for a monotonic increasing data
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for the actual data) while those produced by GM(1,1) have significant deviations. For 
example, for data point 5 which has a value of 296.826, the output of the PSO-GM(1,1) 
is 296.857 whereas that of the GM(1,1) is 209.179. For this data value, the percentage 
error in prediction for the PSO-GM(1,1) computed using (23), is 0.01%, whereas the per-
centage error associated with the GM(1,1) is 29.53%. Table  1 presents the percentage 
errors for all the predictions. It is noted from Table  1 that the errors associated with 
PSO-GM(1,1) are minimal and much lower than those associated with the GM(1,1). For 
the entire monotonic increasing data, the MAPE for the proposed model was obtained 
to be 0.007% while that for the GM(1,1) was 20.38%. Thus, the PSO-GM(1,1) has a better 
accuracy than the GM(1,1).

Figure  3 also shows the forecast results for a monotonic decreasing data, using the 
PSO-GM(1,1) and GM(1,1). The optimal ANW was determined to be 0.5808 by the 
PSO-GM(1,1). For this data set too, the forecasted values by the PSO-GM(1,1) closely 
mirror the actual data while those produced by the GM(1,1) have substantial deviations. 
For example, for data point 5 with a data value of 0.054, the value predicted by the PSO-
GM(1,1) is 0.054 whereas that of the GM(1,1) is 0.065. For this data value, the percent-
age error in prediction for the PSO-GM(1,1) computed using (23) is 0% whereas the 

Table 1  Percentage prediction errors for PSO-GM(1,1) and GM(1,1) for a monotonic increasing data

PSO-GM(1,1) GM(1,1)

0.000 4.580

– 0.007 11.544

– 0.005 17.998

– 0.008 23.981

– 0.010 29.528

– 0.013 34.670

MAPE  0.007 20.383

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6

Actual data PSO-GM(1,1) GM(1,1)
Fig. 3  Performance comparison of PSO-GM(1,1) and GM(1,1) for a monotonic decreasing data
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percentage error associated with the GM(1,1) is -20.37%. Table 2 shows the errors asso-
ciated with the various predictions. It is noted from Table 2 that the PSO-GM(1,1) has 
lower errors. The MAPE for the improved model is 0.057% while that for the GM(1,1) 
is 13.407%. Therefore, the forecast accuracy of the PSO-GM(1,1) is noted to be much 
higher than that of the GM(1,1). The superior results of the PSO-GM(1,1) show that 
keeping the ANW constant at 0.5 (as is the case of GM(1,1)) results in significant errors 
in forecasts while using the proposed approach to find optimal values of ANW yields 
high accuracies in forecasts.

Figure  4 shows the forecast results for the energy consumption data for a laptop, 
using the proposed PSO-GM(1,1), the GM(1,1) and two other models in literature. 
The two other models are models presented in [18, 19]. The model in [18] attempts 
to improve the forecast accuracy of the GM(1,1) by modifying the background value 
while that in [19] offers improvements through the modification of the initial con-
dition. For this forecast, the optimal ANW was determined using the PSO-GM(1,1) 
to be 0.537. It is noted from Fig. 4 that the PSO-GM(1,1) outperforms all the other 
models in accurately forecasting the energy consumption for weeks 1, 2 and 3. The 

Table 2  Percentage prediction errors for PSO-GM(1,1) and GM(1,1) for a monotonic decreasing data

PSO-GM(1,1) GM(1,1)

0 11.553

0.092 4.617

– 0.251 – 3.015

0 – 10.884

0 – 20.370

0 – 30.000

MAPE  0.057 13.407
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Fig. 4  Forecast results for energy data for a laptop, using the various models
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values determined by the PSO-GM(1,1) are the closest to the actuals. For example, 
for the energy consumption data of 450.031 for week 1, the PSO-GM(1,1) gave a value 
of 450.570 (with a minimal deviation of -0.539 while the GM(1,1) and the models in 
[18, 19] outputted, 438.564, 473.978 and 429.120, respectively with higher deviations 
of 11.467, -23.947 and 20.911, respectively. However, for the forecast for week 4, the 
model in [19] performed better than the PSO-GM(1,1) and all the others. The accu-
racy of the model in [19] was 100%. The percentage errors in forecasts for the various 
models are presented in Table  3. The Table shows the PSO-GM(1,1) as having the 
least percentage deviations from the actual values of the forecasts for weeks 1, 2 and 
3 while the method in [19] has the least forecast error for week 4. Overall, the MAPEs 
are 0.6754% for the PSO-GM(1,1), 1.9560% for GM(1,1), 4.0516% for the model in 
[18] and 2.9907% for the model in [19]. Thus, the proposed PSO-GM(1,1) has the 
least overall MAPE and thus outperforms all the other models.

Figure  5 shows the forecast results for the weekly energy consumption data for a 
desktop computer, using the PSO-GM(1,1), GM(1,1) and the two other models. For 
this forecast, the optimal ANW was determined to be 0.462. For this forecast, the 
results have been presented to four decimal places in order to bring out the mar-
ginal difference in values forecasted by the PSO-GM(1,1) and the method in [18]. 

Table 3  Percentage forecast errors associated with the various models, for energy data for a laptop

PSO-GM(1,1) GM(1,1) Method in [18] Method in [19]

– 0.1198 2.5480 – 5.3212 4.6466

0.2862 1.8137 – 0.5175 3.9284

0.8785 1.2619 4.2494 3.3879

– 1.4172 – 2.2005 6.1185 0

MAPE  0.6754 1.9560 4.0516 2.9907
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Fig. 5  Forecast results using the various models, for energy data for a desktop computer
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For this data set, the PSO-GM(1,1) outperformed the GM(1,1) in the forecasts for 
all weeks. It also outperformed the model in [19] in forecasting data for weeks 1, 2 
and 3. The model in [19] however performed better than the PSO-GM(1,1) in fore-
casting the data for week 4. The performance of the PSO-GM(1,1) was at par with 
the model in [18]. For weeks 1 and 2, the PSO-GM(1,1) performed marginally better 
than the model in [18]. Between the two models, the PSO-GM(1,1) was only better 
than the model in [18] by margins of -0.0003 for week 1 and 0.0010 for week 2. On 
the other hand, for weeks 3 and 4, the model in [18] was marginally better than the 
PSO-GM(1,1). The margins for these weeks are 0.0008 and -0.0003 for weeks 3 and 4, 
respectively. The percentage errors in forecast, for the various models, are presented 
in Table 4. From Table 4, the PSO-GM(1,1) and the model in [18] have the least and 
near equal errors. The MAPEs were computed to be 0.0018% for the PSO-GM(1,1), 
2.1272% for the GM(1,1), 0.0018% for the model in [18] and 1.1626% for the model in 
[19]. Thus, overall, the PSO-GM(1,1)’s performance equaled that of the model in [18], 
but was better than the GM(1,1) and the model in [19].

Figure 6 shows the forecast results for the energy data for a printer. For this data, 
the optimal ANW was determined to be 0.1120. The percentage errors in forecast 
for the various models are presented in Table 5. The PSO-GM(1,1) performed better 
than GM(1,1) and the method in [18] for week 1 forecast, better than the method 
in [19] for week 2 forecast, better than GM(1,1) and the method in [18] for week 3, 
and lastly, better than the methods in [18, 19] for week 4. It had the least MAPE of 
8.4135%. The MAPEs for the others are as follows: 9.0802% for GM(1,1), 20.9572% 

Table 4  Percentage errors associated with forecasts by the various models, for energy data for a 
desktop computer

PSO-GM(1,1) GM(1,1) Method in [18] Method in [19]

– 0.0011 4.2443 – 0.0011 2.3192

– 0.0003 2.7056 – 0.0004 1.5522

0.0025 1.1597 0.0024 0.7792

– 0.0033 – 0.3992 – 0.0033 0

MAPE  0.0018 2.1272 0.0018 1.1626
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for the method in [18] and 9.0802% for the that in [19]. Consequently, the PSO-
GM(1,1) is considered to have performed better than all the others.

Figure 7 shows the forecast results for the energy consumption data for a photo-
copier. For this forecast, the optimal ANW was determined to be 0.4899. It is noted 
from Fig. 7 that the PSO-GM(1,1) outperforms the model in [18] in the forecasts for 
all weeks. In comparison with the method in [19], the PSO-GM(1,1) shows better 
performance for forecasts for weeks 1 and 3. For weeks 2 and 4, the method in [19] 
outperforms the PSO-GM(1,1). In comparison with the GM(1,1), the PSO-GM(1,1) 
was only better in relation to the forecast for week 1. The percentage errors in fore-
cast for the various models are presented in Table  6. The MAPEs were computed 
to be 0.9009% for the PSO-GM(1,1), 0.9012% for GM(1,1), 3.7989% for the model 
in [18] and 0.9433% for the model in [19]. Thus, the PSO-GM(1,1) outperformed 
the GM(1,1) and other models in [18, 19]. The near equal performance of the PSO-
GM(1,1) and the GM(1,1) is justifiably so because the optimal ANW determined to 
be 0.4899 by the PSO-GM(1,1) is almost equal the to the fixed ANW value of 0.5 
used by the GM(1,1).

Table 5  Percentage forecast errors for energy data for a printer, associated with the various models

PSO-GM(1,1) GM(1,1) Method in [18] Method in [19]

– 3.213 – 10.296 6.408 – 2.159

4.521 0.188 2.380 7.551

– 25.879 – 28.731 – 45.114 – 19.233

0.041 0.000 – 29.927 7.378

MAPE  8.414 9.080 20.957 9.804
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Conclusion
The forecast accuracy of GM(1,1) has been improved. The improvement lies is in the 
determination of an optimal value for the adjacent neighbor weight. This improve-
ment has been realized using PSO. The optimal value so determined is not fixed but is 
dependent on the data used. The improved model has low forecasting error for indi-
vidual data. The MAPE is also low. The proposed method is found to perform best 
when data used either continuously decreases or increases. For example, the lowest 
MAPE for the model, which is 0.007% was recorded for a monotonic increasing data 
while the model’s worst MAPE of 8.414% was recorded for data that exhibited both 
increasing and decreasing pattern. The proposed model outperforms GM(1,1) and 
two other models in literature that sought to improve the forecast accuracy of the 
GM(1,1). The proposed model is simple to apply and has high accuracy. Future work 
will consider optimizing the initial condition in the model’s time response function 
together with the adjacent neighbor weight, to further improve forecast accuracy.
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Table 6  Percentage forecast errors associated with the various models for energy data for a 
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PSO-GM(1,1) GM(1,1) Method in [18] Method in [19]

1.0143 1.0516 7.2695 1.7258

– 0.6257 – 0.5890 2.5204 0.0963

1.2435 1.2782 1.0707 1.9509

– 0.7202 – 0.6860 – 4.3350 0

MAPE  0.9009 0.9012 3.7989 0.9433
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